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Real-Time Phase-Based Optical Flow,
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Abstract—Low-level computer vision algorithms have extreme computational requirements. In this work, we compare two real-time

architectures developed using FPGA and GPU devices for the computation of phase-based optical flow, stereo, and local image

features (energy, orientation, and phase). The presented approach requires a massive degree of parallelism to achieve real-time

performance and allows us to compare FPGA and GPU design strategies and trade-offs in a much more complex scenario than

previous contributions. Based on this analysis, we provide suggestions to real-time system designers for selecting the most suitable

technology, and for optimizing system development on this platform, for a number of diverse applications.

Index Terms—Reconfigurable hardware, graphics processors, real-time systems, computer vision, motion, stereo.

Ç

1 INTRODUCTION

LOW-LEVEL vision engines constitute a crucial intermedi-
ate step toward a fully symbolic interpretation of the

visual environment by transforming pixel-based intensity
values into a more meaningful description, such as
correspondences between images. In most current vision
systems, the low-level component summarizes the visual
signal into a sparse set of interesting features [1] (e.g.,
corners and/or edges) and restricts further processing,
such as correspondence finding, to this condensed repre-
sentation. Such an approach ignores large parts of the
visual signal (e.g., textured regions) and is often motivated
by computational resource limitations. Recent advances in
massively parallel hardware now make it feasible to
instead establish reliable correspondences for most pixels
in real time by processing the signal in its entirety. In this
work, we compare two such real-time vision architectures,
one developed on a Field-Programmable Gate Array
(FPGA) and the other on a Graphics Processing Unit
(GPU). Both architectures extract dense optical flow (OF),
dense stereo, and local image features (energy, orientation,
and phase) on the basis of a Gabor wavelet decomposition
[2]. These engines have numerous applications in robot
vision [3], [4], [5], motion analysis [6], [7], and image
(sequence) processing [8], [9].

1.1 Related Real-Time Approaches

Due to the abundance of optical flow and dense stereo
estimation methods, we only review a selection of recent
real-time implementations. Both for optical flow and stereo,
one can, broadly speaking, distinguish between local and
global methods. The former only use image information in a
small region surrounding the pixel whereas the latter
enforce additional constraints on the estimates (such as
spatial or spatiotemporal smoothness) [10], [11]. Local
methods are easier to implement efficiently in parallel
architectures and real-time implementations exist on a
variety of platforms (PC (CPU) [12], [13], FPGA [14], [15],
and GPU [16], [17]). Although they are more accurate,
global methods are more difficult to parallelize and real-
time performance can only be achieved at low resolutions
or through a variety of algorithmic simplifications [18], [19],
[20]. A multiscale coarse-to-fine control scheme [21] is
commonly applied in real-time implementations to effi-
ciently extend the dynamic range of both local and global
methods. This work considers local coarse-to-fine phase-
based methods that exhibit an increased robustness
compared to other real-time local methods (for a detailed
discussion, see [2]).

1.2 Related Architecture Comparisons

Platform selection is a crucial stage in system development
and many studies aim to facilitate this process (see [22] for
a review). In an early study [23], the GPU is outperformed
by the FPGA in terms of required clock cycles on three
different applications: Gaussian Elimination, Data Encryp-
tion Standard, and Needleman-Wunsch sequence align-
ment. Biological sequence alignment is also considered in
[24], but here the focus is mainly on a Network-on-Chip
implementation that greatly outperforms the other archi-
tectures. In [25], CPU, GPU, and FPGA are compared on
3D tomography computation. The GPU obtains the highest
absolute performance, but the FPGA has again smaller
clock cycle requirements. Another study concludes that
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each platform requires a different approach for random
number generation [26]. The FPGA outperforms the GPU
three times in absolute performance, and even by an order
of magnitude when power consumption is considered.
Note however that combining random number generation
with, e.g., a Monte-Carlo application can greatly increase
the computation-to-memory ratio, which is favorable for
the GPU. In [27], Monte-Carlo simulation, FFT, and
weighted sum operations are evaluated on FPGA, GPU,
and Playstation 2 using a unified source description based
on stream compilers. This work shows the high perfor-
mance of the GPU and the low-level tuning required to
achieve high performance on the FPGA. A similar
conclusion has been reached more recently on the basis
of a Quantum Monte-Carlo study [28]. Another contribu-
tion [29] uses NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) paradigm [30] as a starting point for
FPGA design. With this unified language and design flow
(labeled FCUDA), the authors obtain similar performance
in FPGAs and GPUs.

In the framework of image processing, Asano et al. [31]
found that FPGAs deliver the most performance in complex
applications (local window-shifting stereo and k-means
clustering) and GPUs in simple computations (2D convolu-
tion). Using a (simple) optical flow algorithm, Chase et al.
[32] obtained similar performance with FPGA and GPU, but
the FPGA required a 12 times longer design time. Finally in
[33], a systematic approach is presented for the comparison
of GPU and FPGA using a variety of image processing
algorithms: color correction, 2D convolution, video frame
resizing, histogram equalization, and motion vector estima-
tion. As compared to the present study, the work in [33] uses
simpler algorithms, older technology, and does not consider
accuracy, resource usage, or development effort. The com-
plexity of the algorithms employed here and the more
extensive evaluation allow us to provide new suggestions
and more sophisticated design choices for the on-chip
implementation of highly complex computer vision models.

1.3 Novelty

Most previous comparison studies focus on performance
alone and provide only qualitative descriptions of sup-
ported arithmetic representation, design time, system cost,
and target applications. Our work goes beyond previous
comparisons (such as [33]) and provides a number of
original contributions.

1. We have developed both systems using languages
and tools that provide a high level of abstraction. For
the GPU, we have used CUDA as opposed to low-
level description languages such as Parallel Thread
Execution. For the FPGA, we have used Handel-C
from Mentor [34], except for critical low-level system
(PCIe) or memory controllers for which VHDL and
specific IP modules enable better control.

2. Previous comparison studies examine different algo-
rithms in isolation. The use of high-level languages in
this work has not only enabled the development of
much more complex vision modules, but also their
integration into a single low-level vision engine. This
allows for a much deeper exploration of the design
trade-offs of each platform. The optical flow module’s

multiscale architecture is of a complexity that is rarely
seen in FPGA implementations [35]. We have now
replicated and integrated this module with other low-
level modules to arrive at a novel hardware archi-
tecture that achieves a very high throughput as
compared to previous contributions [36]. The inte-
gration of different vision modules has been ad-
dressed before in FPGAs [37], but considering much
simpler algorithms. The GPU architecture originates
from [3] but has been extensively described, ana-
lyzed, and optimized in this work, with significantly
improved performance as a result.

3. In addition to design time, system cost, and power
consumption, our evaluation also includes quantita-
tive evaluations of external and on-chip memory
bandwidth and size requirements, arithmetic com-
plexity and representation, final system accuracy
and speed, as well as a discussion of embedded
capabilities and certification issues. Furthermore, we
also consider the scheduling of processing units,
techniques for hardware sharing, and accuracy
versus resource utilization trade-offs. These topics
are seldom addressed in previous studies and
significantly bias the design toward one or the other
technology.

4. We provide a set of guidelines for selecting the most
suitable target technology for various computer
vision algorithms as well as for code optimization
and possible algorithmic modifications required
by each device. Our main focus is on absolute
(unnormalized) system performance (for cost, speed,
development time, etc.). In previous studies, perfor-
mance values have often been normalized by clock
frequency, power consumption, die area, etc. [23],
[26], [33]. Although we will also address this issue
and we understand its importance as an attempt to
abstract architectural and technological issues, we
feel that for real-world applications, absolute values
provide the proper metric for comparison.

1.4 Overview

The different modules of the vision engine are discussed
step by step, in order of increasing (model) complexity:
Gabor filtering in Section 2, local image features in Section 3,
stereo in Section 4, and optical flow in Section 5. Each of
these sections first explains the algorithms and then
discusses the GPU and FPGA implementations and (possi-
ble) algorithmic simplifications. Due to space constraints,
the model descriptions are kept brief. However, MATLAB
implementations are provided in the supplementary mate-
rial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2011.120. The reader is encouraged to consult [2] for
more in-depth discussions and motivations. The integration
of the different modules is discussed in Section 6. Next,
Section 7 addresses the comparison of both architectures.
The results are discussed in Section 8 and the paper is
concluded in Section 9.

2 GABOR FILTERING

All the algorithms of the low-level vision engine operate on
the responses of a filterbank of quadrature pair Gabor filters
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tuned to different orientations and different scales. We use
the same filterbank as described in [2]. This filterbank
consists of N ¼ 8 oriented complex Gabor filters. The
different orientations, �q, are evenly distributed and equal
to q�

N , with q ranging from 0 to N � 1. For a specific
orientation �q, the 2D complex Gabor filter at pixel location
x ¼ ðx; yÞT equals

fqðxÞ ¼ e�
x2þy2

2�2 ej!0ðx cos �qþy sin �qÞ; ð1Þ

with peak frequency !0 and spatial extension �. The
filterbank has been designed with efficiency in mind and
relies on 11� 11 separable spatial filters that are applied to
an image pyramid [38]. The peak frequency is doubled
from one scale to the next. At the highest frequency, we use
a 4-pixel period. The filters are separable and by exploiting
symmetry considerations, all 16 responses can be obtained
on the basis of only 24 1D convolutions with 11 tap filters
[2] (see also Section 2.1). The filter responses, obtained by
convolving the image, IðxÞ, with the oriented filter (1) can
be written as

QqðxÞ ¼ ðI�fqÞðxÞ ¼ �qðxÞej �qðxÞ ¼ CqðxÞ þ j SqðxÞ: ð2Þ

Here, �qðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CqðxÞ2 þ SqðxÞ2

q
and �qðxÞ ¼ atan2ðSqðxÞ;

CqðxÞÞ are the amplitude and phase components, and CqðxÞ
and SqðxÞ are the real and imaginary responses of the
quadrature filter pair. The � operator depicts convolution.
Note that the use of atan2 as opposed to atan doubles the
range of the phase angle. As a result, correspondences can
be found over larger distances.

2.1 GPU Implementation

The image pyramid is constructed by smoothing with a
five-tap low-pass filter and subsampling [2]. A GPU thread
is launched for each output pixel. The smoothing filter is
separable, but higher performance is achieved by filtering
directly with the 2D filter since separable filtering requires
intermediate external memory storage. The image data are
accessed through the texture units, which provide a caching
mechanism for efficient reuse of neighboring elements.

The 11-tap separable Gabor filters are larger than the
low-pass filter and in this case, two stage separable
filtering is much more efficient (three to four times faster).
At each scale, the filterbank responses are obtained using
the two GPU kernels1 shown in Fig. 1 (gx and gy are
horizontal and vertical 1D Gaussians, respectively). Kernel
A performs all column convolutions and kernel B performs
all row convolutions and combines the convolution out-
puts. In kernel A, the combination of multiple convolu-
tions that operate on the same image data dramatically
increases the computation-to-memory ratio. As before,
both kernels read data from (cached) texture memory.
Note that we perform one more convolution than men-
tioned in Section 2. To save this additional convolution, gx
would have to be performed in kernel A, but the latter
only supports column convolutions. After combining the
row convolution results, kernel B interleaves the even and
odd responses in external memory. By storing filter
responses rather than phase, phase wrap-around problems
can be avoided in the subsequent warping operations.

2.2 FPGA Implementation

The hardware description in reconfigurable devices re-
mains a problematic issue for complex mathematical
algorithms, but modern FPGAs incorporate embedded
resources that facilitate architecture design and optimiza-
tion. The embedded multipliers and adders in high-
performance DSPs enable great speedups in convolutions,
and small internal RAMs can be used as circular buffers to
cache image rows for local processing. The presence of
many parallel processing units and the low delays for paths
between them are some of the major benefits of FPGAs. All
these embedded and parallel resources are exploited in the
convolutions of the Gabor filtering stage. The image
pyramid is built first by an iterative reduction circuit.
Gabor filtering is applied after this operation has completed
and just before further processing on each scale. Contrary to
the GPU, the FPGA stores the images rather than the filter
outputs. This requires replicating the filtering module for
each input image. As we will see later, we process a left and
right image, and a three-frame sequence, so five cores are
required in total. Since the filters are 11� 11 pixels in size,
11 embedded multiport RAMs are used to store the 11
image rows that have been most recently used in the
convolution. The filters themselves are stored in wired
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Fig. 1. GPU kernels used to obtain the (single scale) Gabor filterbank
responses. (A) Column filter. (B) Row filter.

1. A GPU kernel is a function executed on the GPU device by many
threads running on different processors of the multiprocessors.



memory at initialization time. After a first latency equal to
5.5 rows, the module produces 1 pixel per clock cycle.

Instead of optimized floating point units and because of
the complex logic required to manage large bit widths, we
have chosen a constrained fixed-point arithmetic. As
shown in [33], over a 12-fold increase in logic density is
required for the FPGA to be comparable with the GPU and
support floating point arithmetic. Therefore, all variables
are limited in their fractional part from the Gabor filtering
stage and onward.

3 LOCAL IMAGE FEATURES

Using a tensor-based method, the Gabor filter responses
across orientation can be combined into the local energy,
Elocal, orientation, �local, and phase at this orientation, �local [2]:

Elocal ¼
XN�1

q¼0

�2
q ; ð3Þ

�local ¼
1

2
arg

XN�1

q¼0

�qe
2j�q

 !
; ð4Þ

�local ¼ atan2ðS;CÞ; ð5Þ

where

S ¼
XN�1

q¼0

Sq�
2
q cosð�q � �localÞ; ð6Þ

C ¼
XN�1

q¼0

Cq�
2
q j cosð�q � �localÞj: ð7Þ

The energy measure provides an indication of where
interesting features (lines or corners) are situated and
the orientation and phase measures describe and identify
the type of feature.

3.1 GPU Implementation

In this stage, each GPU thread operates on a single pixel
and processes the different orientations sequentially. Not all
local image features can be computed in a single run across
orientation because the weighted filter responses in (6) and
(7) depend on the local orientation (4). We do however have
sufficient register space to store Sq�

2
q and Cq�

2
q (for all q)

during a first run across orientation. After this first run also
the local energy (3) and orientation (4) become available,
which allows for computing S and C using (6) and (7) and
finally also the local phase (5). Each scale is processed
sequentially by repeating the same kernel.

3.2 FPGA Implementation

The data dependency resulting from the response weighting
in (6) and (7) is removed in the FPGA implementation by
computing these terms as S ¼

PN�1
q¼0 Sq and C ¼

PN�1
q¼0 Cq

[39]. Each Gabor filter output is sent along three different
paths: local energy, orientation, and phase. These paths are
synchronized through a specific retiming mechanism that
delays faster processes. IP cores provided by the CORDIC

implementation of the Xilinx Core Generator [40] are used
for square root and arctangent calculations. The local
features (LF) are calculated for each scale and stored in
external RAM. Each word in memory contains the
information of four different pixels using a fixed-point
format with 9 bits per feature. The local features circuit adds
latency to the Gabor filtering stage, but does not affect
throughput.

4 PHASE-BASED STEREO

Stereo disparity (D) estimates can be obtained efficiently
from the phase difference between the left and right
images [2]. For oriented filters, the phase difference has to
be projected on the epipolar line. Since we assume rectified
images, this is equal to the horizontal. For a filter at
orientation �q, a disparity estimate is then obtained as
follows:

�qðxÞ ¼
�
�Lq ðxÞ � �Rq ðxÞ

�
2�

!0 cos �q
; ð8Þ

where the ½ �2� operator depicts reduction to the � � �;��
interval. These different estimates are robustly combined
using the median. To reduce noise, a subsequent 3� 3
median filtering is performed that outputs the median if the
majority of its inputs are valid; otherwise, it signals an
invalid estimate. Due to phase periodicity, the phase
difference approach can only detect shifts up to half the
filter wavelength. To compute larger disparities, the esti-
mates obtained at the different pyramid levels are integrated
by means of a coarse-to-fine control strategy [21]. A disparity
map �kðxÞ is first computed at the coarsest level k. To be
compatible with the next level, it is upsampled, using an
expansion operator X , and multiplied by two:

dkðxÞ ¼ 2 � X
�
�kðxÞ

�
: ð9Þ

This map is then used to reduce the disparity at level kþ 1,
by warping the right filter responses before computing the
phase difference:

�kþ1
q ðxÞ ¼

�
�Lq ðxÞ � �Rq ðx0Þ

�
2�

!0 cos �q
þ dkðxÞ; ð10Þ

where

x0 ¼ ðxþdkðxÞ; yÞT: ð11Þ

In this way, the remaining disparity is guaranteed to lie
within the filter range. This procedure is repeated until the
finest level is reached. Note that the median filter is applied
at each scale.

4.1 GPU Implementation

As in the local features stage, each thread in the stereo
implementation operates on a single pixel and processes
orientations sequentially. The kernel is repeatedly applied
at each scale, starting from the coarsest. The texture
hardware is used to upsample the previous scale stereo
estimates (9). This estimate provides the coordinates (11)
for the texture fetch of the right frame filter responses
(10). Although this warping transformation cannot be
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predicted (it depends on the image contents), spatial
locality is high, and the texture cache enables a high
bandwidth in this data-intensive stage of the algorithm. In
addition, the texture units also provide low precision
bilinear interpolation to resolve noninteger coordinates
and increase the precision of the warping operations at no
additional cost. After completing a scale, the stereo
estimates are assigned to the texture units and processed
in a median filter kernel. Due to the possibility of invalid
estimates, a variable number of estimates need to be
sorted in this kernel. To simplify this process, we first
replace invalid estimates alternately with a very large and
very small number and continue with a standard sorting
routine. In this way, missing values have a negligible
effect on the estimated median and the kernel remains
simple. After median filtering, the texture references are
mapped to the Gabor filter responses at the next scale,
and the GPU kernel is repeated. Shared memory is not
used in this implementation.

4.2 FPGA Implementation

The FPGA also processes the different scales sequentially,
starting at the coarsest level. Unlike in the GPU, filter
response warping is infeasible due to the smaller number
of memory banks, and the much slower clocked memory.
Instead, the images are warped before the Gabor filtering.
This greatly reduces memory access. Furthermore, since
the warping is 1D in the stereo case, the rows can be
stored in embedded multiport RAMs, and external
memory access can be avoided entirely. The single scale
stereo core consists of three stages that are reused to
process all scales: Gabor filtering (shared with the local
features stage), phase difference calculation, and median
estimation. In the phase difference computation, we again
use the arctangent cores from Xilinx, while a tree-based
architecture is used for sorting in the median circuit. The
regularizing 3� 3 spatial median filtering is performed at
the end of each scale. The final stereo estimates are stored
in a fixed-point format with 8 and 4 bits for the integer
and fractional parts, respectively. Further details of the
stereo architecture can be found in [41].

5 PHASE-BASED OPTICAL FLOW

In a similar fashion as stereo disparity can be obtained from
the phase difference between left and right images, optical
flow can be obtained from the evolution of phase in time
[42]. We use the algorithm by Gautama and Van Hulle [43],
which can exploit multiple image frames.

Points on an equiphase contour satisfy �ðx; tÞ ¼ c, with c
a constant. Differentiation with respect to time yields:

r� � vþ  ¼ 0; ð12Þ

where r� ¼ ð��=�x ; ��=�yÞT is the spatial phase gradient,
v ¼ ðvx; vyÞT the optical flow vector, and  ¼ ��=�t the
temporal phase gradient. Due to the aperture problem, only
the velocity component along the spatial phase gradient
can be computed (normal flow). Under a linear phase
model, the spatial phase gradient can be substituted by the
radial frequency vector, !0ðcos �q ; sin �qÞ. In this way, the

component velocity, cqðxÞ, can be estimated directly from
the temporal phase gradient,  qðxÞ:

cqðxÞ ¼ �
 qðxÞ
!0

ðcos �q ; sin �qÞ: ð13Þ

At each location, the temporal phase gradient is obtained
from a linear least-squares fit to the model:

�̂qðx; tÞ ¼ aþ  qðxÞt; ð14Þ

where �̂qðx; tÞ is the unwrapped phase. We typically use
five frames in this estimation. The intercept of (14) is
discarded and the reliability of each component velocity is
measured by the mean squared error (MSE) of the linear fit.
Each component velocity cqðxÞ provides the linear con-
straint (12) on the full velocity:

vxðxÞ � !0 cos �q þ vyðxÞ � !0 sin �q þ  qðxÞ ¼ 0: ð15Þ

The constraints provided by several component velocities
need to be combined to estimate the full velocity. Provided
a minimal number of component velocities at pixel x are
reliable (their MSE is below a threshold, �l, the phase
linearity threshold), they are integrated into a full velocity
by solving the overdetermined system of (15) in the least-
squares sense. As in Section 4, a 3� 3 spatial median filter is
applied (separately to each optical flow component) to
regularize the estimates. Next, a coarse-to-fine control
scheme is used to integrate the estimates over the different
pyramid levels [9]. Starting from the coarsest level k, the
optical flow field vkðxÞ is computed, median filtered,
expanded, and used to warp the phase at the next level,
�kþ1ðx0; tÞ, as follows:

x0 ¼ x� 2 � vkðxÞ � ð3� tÞ: ð16Þ

This effectively warps all pixels in the five-frame sequence
to their respective locations in the center frame (frame 3).

5.1 GPU Implementation

The Gabor pyramid is traversed in the same way as in the
stereo algorithm, but the previous scale optical flow
estimates are now used to warp the Gabor filter responses
of the two frames before and the two frames after the
center frame in the buffer (16). Only a very small amount of
temporary storage is required to solve the linear least-
squares systems and the use of shared memory can again
be avoided. A median filter kernel similar to the one
discussed in Section 4.1 is applied to the estimates before
proceeding to the next scale.

5.2 FPGA Implementation

As in the stereo module, the warping operates on images
rather than phase or filter outputs. In addition, the temporal
sequence is reduced from five to three frames to save two
Gabor filter modules and additional external memory
requirements. Unlike in the stereo case, the image warping
is now 2D and requires random external memory access.
Due to the sequential nature of this memory, a throughput
of 1 pixel per clock in the warping stage can only be
guaranteed by storing a 2� 2 window for each pixel, four
times increasing the memory requirements. An iterative
median filter regularization is performed for this circuit as
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well. The final estimates are again stored in a fixed-point
format with 8 and 4 bits for, respectively, the integer and
fractional parts.

The single scale optical flow core is the most compli-
cated part of the system and contains over 900 parallel
processing units and 80 pipeline stages. It is described in
more detail in [35].

6 SYSTEM INTEGRATION

6.1 GPU System Description

The GPU system has been implemented on an NVIDIA
Geforce GTX 280 [30]. It is a massively parallel processor
equipped with large amounts of high bandwidth (but large
latency) memory. Programming and debugging is facili-
tated by the extended C language provided by the CUDA
programming framework that exposes the GPU’s streaming
processors and texture hardware.

6.1.1 System Overview

Fig. 2 provides an overview of the sequential processing
stages (dashed boxes) and their interaction with GPU
memory (gray). The downsampling and filtering stages
first process the left and then the right image. The
temporary storage used in between the Gabor column and
row filtering operations is reused for the right image. A
buffer is used to store the Gabor pyramid responses for the
five most recent frames of the left sequence. Each of these
pyramids is used five times by the optical flow algorithm.
An image buffer delays the right images to synchronize the
input to the stereo algorithm. Since the left Gabor pyramid
of the third frame is required by the local features, stereo
and optical flow stages, memory access could be reduced by
combining these stages into a single GPU kernel. This does
not improve performance though since, as we will see in
Sections 7.1 and 7.2, all these kernels are compute- rather
than memory bound.

6.1.2 Algorithm Modifications

No algorithm simplifications are required in the GPU
implementation. Some minor differences in the precision
of the estimates with respect to a CPU implementation do
occur (see Section 7.4) due to the single precision floating
point representation, and the use of the texture units for
bilinear interpolation in the warping operations. These
texture units use only 8 bits fractional value for the

interpolation weights [44]. The image rather than filter
response warping simplification adopted in the FPGA
architecture is not beneficial for the GPU, since it requires
filtering the images multiple times and the filtering stage
requires a substantial amount of time (see Section 7.1).
Therefore, the GPU implementation addresses a more
complex model and this will have a slight impact on
the final system accuracy of the GPU approach versus the
simpler FPGA approach.

6.2 FPGA System Description

Every processing module of the FPGA system has been
developed and debugged independently on a XircaV4
platform from SevenSolutions [45] equipped with a Virtex 4
xc4vfx100 and four external SDRAM banks that allow
parallel access and thus a higher bandwidth. The Virtex 4
system has limited resources and can only fit the entire
system if additional simplifications or resource sharing are
adopted. Therefore, the fully parallel architecture (which can
process 1 pixel per clock along scales) has been synthesized
for a Virtex 5 architecture. This architecture is of the same
hardware generation as the GPU used. All subsequent
performance analyses have been performed with this
synthesis. Handel-C by Mentor Graphics [34], a C-like
hardware description language, has been used, except for
critical parts such as interfaces and a memory controller that
have been described with VHDL. A C-like language such as
Handel-C allows one to reduce development time without
significantly affecting hardware requirements or perfor-
mance as compared to VHDL [46]. By using the remapping
option to distribute combinational logic across flip-flop
boundaries, the clock frequency can be significantly im-
proved. To achieve a high performance with such high-level
description languages, advanced design techniques such as
superscalar and deeply pipelined circuit architectures are
required [15], [39], [41]. These are supported thanks to
Handel-C’s built-in parallel statement. By combining these
design methodologies with this language, a good trade-off
can be found between time-to-market, design resources, and
system performance. This is one of the challenges of current
circuit design technologies.

6.2.1 System Overview

Fig. 3 contains the final architecture with its three main
modules: the single scale optical flow core, the single scale
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Fig. 2. GPU system overview showing the (sequential) processing
stages (dashed boxes) and their interaction with GPU memory (gray).

Fig. 3. FPGA system overview showing the main processing cores
(blue): optical flow, disparity, and local features.



stereo core (which also computes the local features), and the
main multiscale hierarchical processing units. This last
block contains a reduction block for pyramid construction,
an expansion block with bilinear interpolation, and a
warping circuit (1D in the stereo case). The different
processing units are synchronized by means of circular
FIFO buffers or blocking channels, and external memory
access is greatly reduced in the warping circuit by operating
on images rather than filter responses. Each block of Fig. 3
represents a complex design. All system modules have been
described in detail in [35], [41] and implemented separately
in the XircaV4. A detailed description of the integration of
all the circuits and an evaluation of the architecture’s
scalability is provided in [36].

6.2.2 Algorithm Modifications

As explained in previous sections, we have adopted the
following hardware friendly simplifications: fixed-point
arithmetic, reduced temporal support, and image warping.
In the local features stage, the hardware cost has been
reduced further by simplifying the computation of the S and
C-components. The accuracy loss related to these simplifica-
tions has been studied with a MATLAB model of the
hardware circuit. This preliminary study is very useful for
the hardware designer as it allows adjusting the bit width.
The accuracy loss associated with the final design of the most
complex module, the optical flow, is reported in Table 1 for
the well-known yosemite sequence [47]. The accuracy is
evaluated in terms of the standard measures average angular
error (AAE), deviation of the AAE (STD), and density of valid
estimates. To facilitate comparison, we have also included an
additional column that shows the percentage of flow vectors
obtained with an angular error (AE) smaller than five degrees
when the phase linearity threshold is set very high. All tests
were performed without the median filter regularization. The
last row contains the results when all simplifications are
combined. These differ from those in Section 7.4 due to
differences in the rounding model and the threshold
operation adopted by the hardware. We can see from Table 1
that the largest accuracy loss results from the image warping
simplification. Unfortunately, filter response warping re-
quires 16 times more hardware resources. The reduction of
the number of frames from five to three further reduces
accuracy (and increases density) but is mandatory to reduce
memory access. The fixed-point notation has only a negli-
gible effect on accuracy, but it can reduce the density of the
estimates.

We can conclude from this section that complex FPGA
system implementations require many algorithmic modifi-
cations to map the algorithms onto the hardware logic. In

particular if fixed-point arithmetic is employed, as in the
system considered here, a systematic methodology is
required to evaluate different modifications. This is much
less in GPU system development since these devices are
more oriented to directly execute algorithm descriptions.

6.2.3 Memory Controller Unit (MCU)

The final system output requires 63 bits storage for each pixel:
12 for disparity, 24 for optical flow, 9 for magnitude, 9 for local
orientation, and 9 for phase. Memory management is very
complicated since external memory addresses use 32þ 4 bit
words. In the optimal case, an external memory address can
be accessed each clock cycle, but this performance can
degrade significantly as a result of erroneous memory
management scheduling. To manage the huge quantity of
data accesses, it is therefore crucial to use a special Memory
Controller Unit. We employ an MCU with different Abstract
Access Ports (AAP) [48]. Due to its critical importance, this
circuit is described in VHDL. The MCU operates at a higher
frequency than the processing engine to enable temporal
multiplexing of the different memory accesses. Blocking
FIFOs link the different clock domains and a round robin
priority system manages petitions coming from the AAPs.
The MCU is also essential in the multiscale motion compen-
sation (warping) and in synchronizing the different scales
through memory operations.

7 ARCHITECTURE COMPARISON

In this section, we compare the GPU and FPGA imple-
mentations in terms of arithmetic complexity, external and
on-chip memory access, data dependency, accuracy, speed,
power consumption, cost, and design time.

7.1 Arithmetic Complexity

The arithmetic complexity has been reduced in the FPGA
through a variety of algorithmic simplifications. The GPU
on the other hand requires fewer filtering operations. The
FPGA outputs a pixel every 2.7 clock cycles and performs
over 2,300 operations each cycle (estimation based on the
approximate number of custom elementary processing
units excluding pipeline synchronization). Table 2 shows a
breakdown of this number according to the different
vision modules. These modules are reused in the multi-
scale processing. Table 3 reports on the arithmetic
complexity (and memory access) of the different GPU
kernels when processing 1;280� 1;024 images at six scales.
The per pixel measures in this table refer to all pixels
across all scales (1;280� 1;024�

P6
s¼1 2�2ðs�1Þ ¼ 1;747;200

in this example). The number of instructions executed and
computation times were obtained with the CUDA Visual
Profiler. The relative throughput is computed with respect
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TABLE 1
Accuracy Loss for FPGA Simplifications (Simulation)

TABLE 2
FPGA Module Complexity in Terms of Processing Units



to the maximal single-issue instruction throughput (in
certain occasions, the GPU can dual-issue instructions).
From this column, we can infer that all kernels, except for
downsampling and Gabor row filtering, are most likely
compute bound.

When we compare Table 2 with the #instructions column
in Table 3, we see that the (relative) arithmetic complexity of
the optical flow module is much higher in the GPU than in
the FPGA. Note however that in the FPGA, the stereo and
optical flow cores also contain multiple Gabor filtering
cores. If we also include the filtering stages in the GPU
instruction counts, we obtain 2,098 instructions for
stereo+features (1;347þ 244þ 507) and 3,221 for optical flow
(1;347=2þ 2;548). Interestingly, although very different
approaches were taken, the relative complexity is very
similar in both architectures.

7.2 External and On-Chip Memory Access

Real-time computer vision systems depend to a large extent
on high clock frequencies and high bandwidth external
memory. FPGA technology severely limits these two
aspects. Since GPUs do not suffer from the resultant logic
delays, they can employ specific silicon logic that runs at
high frequencies and can interface the latest memory
technologies (see also Table 8). For these reasons, a
specialized MCU has been developed that optimizes and
schedules the external memory accesses in the FPGA (see
Section 6.2.3). Fig. 4 summarizes the memory accesses to
each of the FPGA’s SRAM banks: banks B0 and B1 provide
double buffer communication with the PC, bank B2
supports the optical flow computation, and bank B3
supports the stereo (and local features) computation. Fig. 4
also shows the number of accesses per bank, which differs
for each processing path (stereo and optical flow). The cores
communicate with memory through the MCU and cache
previously used image rows in embedded BRAMs (on-chip
memories) to optimize local accesses.

The external memory access requirements of the different
GPU kernels are summarized in Table 3. In this context,
external memory refers to the GPU’s high bandwidth, large
latency memory banks (as opposed to CPU memory). The
throughput in the downsample and Gabor row kernels greatly
exceeds the device bandwidth (measured at 113 GB/s on the
GeForce GTX 280) due to the effective use of the texture
cache. Considering also the small relative instruction
throughput, it is clear that these two kernels are memory
bound. The optical flow kernel on the other hand achieves
the lowest memory and highest arithmetic throughput. The
median filter kernel is most effective in exploiting all the

GPU’s resources by achieving both high memory and
arithmetic throughput. Due to the sequential nature of the
different processing stages, a pool of temporary storage can
be reused often and the total storage requirements are equal
to 193 and 772 MB for the 640� 512 and 1;280� 1;024
examples, respectively. This large requirement results from
the 5þ 1 frames Gabor pyramid buffer and could become
problematic at higher image resolutions. With regard to
internal (on-chip) memory, the GPU implementation exten-
sively uses constant and texture (both automatically cached)
rather than shared memory. Recent GPU optimization
studies also encourage the use of register space over shared
memory whenever possible [49]. Shared memory could be
used to further enhance the algorithms. The communication
between the CPU and the GPU is performed asynchro-
nously concurrently with computation and thus only
slightly increases latency without affecting throughput.

Note that one of the reasons for the high computing
power of the GPU is the parallel access to a large number of
memory chips clocked at a very high frequency. Depending
on the package, FPGAs can also exploit a larger number of
memory chips, but at a much lower clock frequency.
Solutions such as the built-in memory controllers presented
in Spartan-6 devices can help future FPGA devices to
overcome this technology bottleneck.

7.3 Data Dependency

Although the algorithms presented in the previous sections
are highly parallelizable, important data dependencies exist
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TABLE 3
GPU Kernel Arithmetic Complexity and External Memory Access (1;280� 1;024)

Fig. 4. Number of read and write memory accesses per pixel in the
different FPGA banks. The bandwidth used versus available is shown
above each bank in MB/s.



that affect both architectures in a different way. The FPGA
architecture is most affected by the multiscale nature of the
algorithms. Since the image pyramid construction is
inherently sequential, it must be completed before the main
processing can start. The coarse-to-fine control scheme
introduces additional dependencies that increase the
number of pixels, operations (image warping), and external
data storage requirements. These dependencies are less
severe for the GPU architecture. The warping operations are
efficiently handled by the texture units (and thus essentially
free) and the external memory access is not a limiting factor
since the feature extraction kernels are compute- rather than
memory bound. The downsampling stage is memory bound
but only represents a small proportion of the total
processing time (see Table 3). Much more severe for the
GPU architecture is the data dependency that results from
the separable Gabor filtering, where external memory
access cannot be avoided in between column and row
filtering. The memory-bound row filtering kernel takes up a
large proportion of the total processing time. The only
alternatives here are either performing nonseparable con-
volution, which we found to be slower (results not shown),
or retaining the column filtering results on chip, which
requires more resources than available. The FPGA does not
have this problem since the column filtering results can be
stored in embedded BRAMs. The Gabor filtering core is
even replicated multiple times in the disparity and optical
flow modules.

All the spatial interactions occur through the Gabor and
median filtering, and through the coarse-to-fine control
scheme. A very large amount of parallelism can be exploited
within each scale since each pixel is processed indepen-
dently. It is here that the FPGA’s increased flexibility enables
a more fine-grained parallelism. The FPGA processes
different pixels sequentially but performs all tasks in
parallel by over 3,000 custom processing units. The GPU
on the other hand processes a large number of pixels in
parallel, but performs the different operations sequentially.

7.4 Accuracy

We adopt a similar methodology as described in [2] to
evaluate the accuracy of both systems. The local feature
estimation is evaluated using a synthetic image (Fig. 5A) in
which the feature type in the center of a circular manifold
changes from a step edge to a line. For stereo and optical
flow, we use benchmark sequences from the Middlebury
data set [47] for which ground truth is available.

The average and standard deviation of the errors in
feature localization, orientation and phase (evaluated at
500 points), are summarized for both architectures and a
reference CPU implementation in Table 4. The phase
estimated on the GPU is shown in Fig. 5B. The results are
very accurate and comparable for both the GPU and FPGA,
but the GPU results are nearly identical to the CPU results.
As a result of the low precision arctangent core, the phase
estimation is significantly less precise in the FPGA.

Table 5 summarizes the stereo results for the FPGA,
GPU, and CPU in terms of the mean absolute error (MAE),
the standard deviation of the error (STD), the density of
valid estimates, and the proportion of pixels with an
absolute error smaller than 0.5 pixels. Once again, the
GPU and CPU results cannot be discerned from this table.
As expected, the FPGA results are less accurate (mainly due
to image warping) and less dense (mainly due to the fixed-
point arithmetic). The stereo estimates for the cones
sequence are visualized in Fig. 6. For illustrative purposes,
the rightmost image in Fig. 6 also shows that a simple left/
right consistency check can remove most of the erroneous
estimates on the GPU [2].

The optical flow is evaluated using the measures from
Section 6.2.2 and the results are summarized in Table 6. The
same phase linearity threshold (�l ¼ 0:5) was used for all
sequences and architectures. The differences between the
GPU and CPU are still small but, due to the increased
arithmetic complexity, they are now visible in the table. The
FPGA again obtains a lower accuracy as a result of the
different algorithmic simplifications that had to be adopted.
The optical flow estimates obtained on the rubberwhale
sequence are visualized in Fig. 7. In addition to the medium
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Fig. 5. (A) Test image with continuously changing phase in the center of
the circular manifold. (B) Local phase estimated on this image (GPU).

TABLE 4
Local Features Accuracy

TABLE 5
Stereo Accuracy



accuracy result, we have also included results obtained at a
higher accuracy setting (�l ¼ 0:05) in Table 6 (in brackets)
and Fig. 7 (rightmost image). Due to the lower precision on
the FPGA resulting from the fixed-point arithmetic, such
high precision estimates can only be obtained on the GPU
and CPU.

7.5 Speed

The total processing time, frame rate, throughput, and
cycles/pixel obtained with the particular GPU and FPGA
systems used here are summarized in Table 7 for medium
and high image resolutions and for the single and multiscale
cases. The GPU’s throughput increases at the high image
resolution due to increased occupancy of the cores. The
FPGA’s speed more than doubles in the single scale case
since the critical image pyramid data dependency is
avoided. As a result, the system can process 1 pixel per
clock cycle. The FPGA’s lower clock frequency (one order of
magnitude less than the GPU) is the main cause of the lower
frame rate and throughput. If we normalize performance by
clock frequency, the FPGA requires about 20 and 10 times
fewer cycles/pixel than the GPU in the single and multiscale
cases, respectively.

7.6 Power Consumption, Cost, and Design Time

Table 8 summarizes the power consumption, cost [50], [51],
time-to-market (estimated), and required human resources
(postdoctoral level) for different GPU and FPGA genera-
tions. The FPGA design time also includes the analysis of
the fixed-point representation and the evaluation of the
algorithmic simplifications. Developing this complex low-
level vision engine in a constrained amount of time required

the use of high-level languages to (greatly) simplify the
design process. Although a low-level system description
(closely mapping FPGA circuitry and manual placement)
can significantly increase performance, time-to-market
deadlines often favor a fast development. For this reason,
FPGA designers usually work at a higher level of abstrac-
tion, using for instance Verilog or VHDL languages at
RT level or high-level description languages (such as
Handel-C) as we did here. In the GPU, a working system
can be obtained in a matter of days if the model is
understood and C- or MATLAB-code is available. Optimi-
zation to the levels of performance reported here however
requires a considerable amount of additional time, exper-
tise, and a great deal of experimental tuning. Table 8 also
summarizes the computational power of the platforms in
terms of absolute and normalized (by power consumption)
number of operations per second (OPS). The latter is
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TABLE 6
Optical Flow Accuracy

Fig. 7. Central image, ground truth, and estimated optical flow for the rubberwhale sequence.

Fig. 6. Left image, ground truth, and estimated disparity for the cones image pair.

TABLE 7
Speed



expressed in fixed-point operations per second for the
FPGA and floating point operations per second (FLOPS) for
the GPU. The GPU provides an order of magnitude more
computational resources, but is outperformed by the FPGA
when power consumption is taken into account.

8 DISCUSSION

A comparison between FPGA and GPU architectures is
complicated by continuous changes in technology and
marketing strategies of the two platforms, which both
substantially affect the computational resources available.
The introduction of embedded processing cores or new
memory interfaces can significantly affect an architecture.
Speed and power consumption can be improved in both
architectures simply by adopting the latest technology. The
synthesis tool facilitates this adaptation in the FPGA
although some interfaces to external devices may have to
be redesigned. The FPGA’s performance can be increased
by utilizing DDR-based memory, which can be clocked
much higher than SSRAM. Unfortunately, most prototyping
platforms contain only one such memory bank, which is
insufficient for the current system. We expect that a custom-
designed board with four DDR memory banks would allow
for at least a 50 percent performance increase, but the
evaluation of this issue is beyond the scope of the present
contribution. In addition to an increased number of
processing cores and available memory, the GPU typically
acquires new capabilities in each generation. Such changes
may require modifications in the configuration of the kernel
calls or even the kernel code itself to achieve optimal
performance. The C-like programming interface greatly
facilitates such tuning. A transfer to devices with fewer
resources is straightforward on the GPU, but requires
significant architectural changes on the FPGA. Two main
strategies can be adopted here: hardware sharing and
accuracy reduction [36]. The first sacrifices throughput to
retain precision and vice versa for the second. Both
strategies were required in the Virtex 4 implementation
(Table 8) in order to fit the complete architecture in such a
low cost device (hence the increased time-to-market).

We have summarized the major results of our compar-
ison in Table 9, by assigning the components of the vision
engine and the comparison to the most suitable target
platform. The Gabor filterbank is more suited to the FPGA
since the GPU requires intermediate storage for the
separable filtering, which results in a memory-bounded
kernel. On the other hand, the central use of phase as
image descriptor is more interesting for the GPU due to the
availability of the special function units and the floating
point nature of the device. The FPGA suffers here from the
fixed-point representation which affects thresholds. The
phase warping also exceeds the external memory available

to the FPGA, and needs to be replaced by image warping.
The local features computation requires additional time on
the GPU whereas it is merged with the disparity computa-
tion on the FPGA. The image pyramid introduces a critical
data dependency in the FPGA implementation that causes
a significant overhead. The median filtering is very
efficient on the GPU, but still represents more overhead
than in the FPGA case. The warping operations are much
better suited for the GPU due to the availability of the
texture units, which facilitate irregular memory access and
interpolation. The high arithmetic intensity of the optical
flow module can be better handled through the operation
level parallelism available on the FPGA. On the other
hand, large temporal support (five frames) requires a large
amount of memory, which is only available on the GPU.
The FPGA implementation is many times more power
efficient than the GPU, although some accuracy has to be
compromised. The FPGA requires an order of magnitude
fewer cycles per pixel, but only achieves around half the
absolute speed of the GPU (in the multiscale case). A GPU
design strongly depends on the architecture provided by
the manufacturer, whereas an FPGA design leaves more
choices to the engineer. This flexibility of the FPGA (optical
flow operation level parallelism, multiple convolution
cores, etc.) comes at the cost of a much larger design time
than the GPU.

The results presented here only consider a subset of all
possible problem types. For example, it is well understood
that the FPGA’s representation flexibility makes it better
suited for problems involving a large number of bitwise
operations (e.g., biological sequence alignment). Many
problems, on the other hand, require a much larger
dynamic range than the application considered in this
work, and then a fixed-point representation is no longer
suitable. It is also well known that the GPU excels on
computationally intense, high throughput applications with
large data sets, but is not suitable for applications that
require very short latency responses.

PAUWELS ET AL.: A COMPARISON OF FPGA AND GPU FOR REAL-TIME PHASE-BASED OPTICAL FLOW, STEREO, AND LOCAL IMAGE... 1009

TABLE 8
Platform Characteristics

TABLE 9
Most Suitable Target Platform



8.1 Target Scenarios and Products

The smaller clock frequency and power requirements render
the FPGA platform very suitable for embedded applications,
especially in the latest devices such as Xilinx’ Virtex 6 and 7
families [40]. Traditionally, GPUs have not been considered
suitable for this, but preliminary systems are starting to
appear (e.g., GE’s Intelligent Platforms [52]). Another
important strength of the FPGA (e.g., the Virtex 5) is its
compliance with certification standards such as DO-254 [53]
which enable its application in critical aerospace and defense
applications. The GPU on the other hand benefits from the
large market penetration (gaming) that greatly reduces its
cost for general purpose computation. The FPGA’s high cost
can only be reduced for very-high-volume applications by
means of an ASIC implementation of the FPGA prototype.

The development of a complex vision system requires
different stages depending on the target application. In this
work, we have focused on GPU and FPGA implementa-
tions. In Fig. 8, we have situated these and other platforms
in a time-complexity plot. For real-time purposes, we can
either choose a stand-alone platform, based mainly on
FPGA technology, or a standard PC accelerated through
optimized code or a coprocessing board such as an FPGA or
GPU. If we want to move toward an industrial product, we
need to complete all the different stages and use technol-
ogies such as DSPs and FPGA-ASICs. We have not
addressed this issue in this work. While FPGAs can cover
a wide spread of applications including industrial, robotics,
automotive, aerospace, and military, GPUs are still limited
in this respect by the restricted certification capabilities and
the high power consumption (but see [52]). For this reason,
FPGAs are present in three different stages of Fig. 8 whereas
GPUs only occur in one.

Important efforts are being invested in applying GPUs in
high-performance computing (as opposed to embedded
systems). Of particular relevance here is NVIDIA’s Tesla
line of professional products, which are more durable and
have special features, such as ECC data protection.

9 CONCLUSION

Platform comparisons such as the one performed in this
work strongly depend on the specific hardware used, but
general conclusions can still be drawn. The work in [33]
examined five relatively simple image processing algorithms

implemented on a Xilinx Virtex 4 FPGA and a GeForce GTX
7900 GPU. In accordance with previous comparative work,
the authors found that in the presence of data dependencies,
a customized FPGA data path exceeds GPU performance.
For such simple models, FPGA technology seems to be more
suitable. We have extended the state of the art by comparing
both platforms using medium to highly complex vision
algorithms that stretch the FPGA to its limits. The complex
vision modules and their integration considered here,
provide a general idea of the two platforms’ behavior when
both intensive (and locally random) external memory access
and high arithmetic complexity are involved. Our contribu-
tion demonstrates that especially the high bandwidth
provided through newer GPU memory interfaces enables
the GPU to overcome the FPGA in terms of absolute
performance, when complex models are implemented. The
GPU’s exceptional performance here is also to a large extent
due to the iterative nature of the multiscale algorithms. It was
stated in [33] that the FPGA’s embedded memory bandwidth
enables it to overcome the GPU for local and deterministic
processing, but as we have shown here, external and random
(but with 2D locality) memory accesses are more suitable for
the newer GPU architectures and their texture units. On the
other hand, the cycles per pixel requirements show that a
customized architecture is much more efficient than a
generic one. An ASIC conversion of the FPGA is expected
to outperform the GPU since it can reduce the GPU’s clock
frequency advantage and it requires fewer simplifications
due to the increased number of resources. Both for simple
and complex models, the development time is higher when
addressing FPGA technology (and even more so for an ASIC
conversion) due to the large amount of choices given to the
designer, as opposed to GPU approaches in which a base
computing architecture is already defined and taking full
advantage of it is the goal. Although GPUs are not suitable
for many embedded applications and none of the critical
ones, as a coprocessing board, the GPU surpasses the FPGA
in most of our comparisons.
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