
Real-time Model-based Articulated Object Pose Detection
and Tracking with Variable Rigidity Constraints

Karl Pauwels Leonardo Rubio Eduardo Ros
University of Granada, Spain

{kpauwels,lrubio,eros}@ugr.es

Abstract

A novel model-based approach is introduced for real-
time detection and tracking of the pose of general articu-
lated objects. A variety of dense motion and depth cues are
integrated into a novel articulated Iterative Closest Point
approach. The proposed method can independently track
the six-degrees-of-freedom pose of over a hundred of rigid
parts in real-time while, at the same time, imposing articu-
lation constraints on the relative motion of different parts.
We propose a novel rigidization framework for optimally
handling unobservable parts during tracking. This involves
rigidly attaching the minimal amount of unseen parts to the
rest of the structure in order to most effectively use the cur-
rently available knowledge. We show how this framework
can be used also for detection rather than tracking which
allows for automatic system initialization and for incorpo-
rating pose estimates obtained from independent object part
detectors. Improved performance over alternative solutions
is demonstrated on real-world sequences.

1. Introduction

Much progress has been made recently with respect to
real-time model-based pose estimation of rigid objects. In
many situations, certain relations are known to exist be-
tween such objects (e.g. planar motion) or result from the
way in which these objects are observed (e.g. through mul-
tiple fixed cameras). Articulated objects constitute an im-
portant class of objects that can be described as a set of
rigid components whose relative motion satisfies a number
of constraints. Although great progress is being made on
certain articulated objects, such as hands or human bod-
ies, less work focuses on more general articulated objects.
These are important for robotic manipulation of dexterous
objects or for understanding human manipulation of such
objects. Exploiting the dynamic relations between separate
objects or object parts can greatly facilitate detection and
tracking of these objects in complex real-world scenarios.

1.1. Related Work

Although much research is concerned with how the re-
lationships between different objects or object parts can be
extracted from visual information [11], we only focus here
on model-based methods that assume this information to be
known.

Many discriminative [23] and generative [18] methods
have been proposed that focus on particular articulated ob-
ject classes such as hands or bodies. These methods can be
difficult to extend to more general object types since they
incorporate large amounts of prior information, often ex-
tracted in a learning stage, and actively impose it to e.g. re-
duce the search space of sampling-based methods. Certain
assumptions (e.g. dynamical models or a single-actor hy-
pothesis [12]) and/or stochastic optimization methods have
also been used to apply sampling-based methods in more
general scenarios. Another type of approaches instead op-
erates on a differentiable formulation of the problem, which
imposes limitations on the energy function, but scales more
efficiently to high problem dimensionality [5]. Many depth-
only articulated Iterative Closest Point (ICP) methods have
also become widely-used [8, 21].

A distinction can be made between pose detection and
pose tracking. Detection methods do not rely on temporal
information but instead recover the pose from a single im-
age frame. Tracking methods on the other hand refine an
estimate (e.g. from the previous time) based on current time
measurements. Currently most combined articulated pose
detection and tracking methods are either discriminative or
employ heuristic methods (e.g. hill climbing) to incorporate
part detectors into particle-filter based methods [7].

Regarding articulated pose tracking, a flexible constraint
framework was introduced by [6] and subsequently ex-
tended to more easily handle highly complex structures [3].
Not considered in those works are situations where parts
become invisible, a situation frequently encountered with
complex objects, due to occlusions, and with noisy input.
Solving for such invisible parts effectively constitutes an
inverse kinematics problem. Inverse kinematics have been

1

CUES

stereo
optical flow
AR flow
keypoints

INPUT
left video
right video

MODELS

6D pose
shape
texture
keypoints

CON-
STRAINTS

type
frame
screw

Figure 1. Method overview. The different visual cues (AR = Aug-
mented Reality) are combined with the model components to es-
timate the pose of objects or object parts while satisfying a time-
varying set of constraints (2.3.2) on relative velocities.

exploited previously to reduce the sampling manifold for
particle filtering [22] by analytically solving sub-problems
of the kinematic hierarchy based on separating active from
inactive parameters. We introduce a novel automated ap-
proach here that solves such inverse kinematics problems
under a continuously changing structure and apply it on top
of a real-time multi-cue integrated detection and tracking
system.

1.2. Main Contributions

We first extend the work of [6] by incorporating various
motion and depth cues (as opposed to just edges) which ef-
fectively results in a novel articulated ICP approach. We
next introduce a rigidization framework that enables han-
dling arbitrary configurations of visible and invisible parts.
We demonstrate that this involves solving inverse kinemat-
ics problems over a continuously changing object structure.
We also show how this framework can be used for detec-
tion as well as tracking. This enables automatic initializa-
tion and/or recovery in case of tracking failures through the
incorporation of object part detectors. Finally, we demon-
strate that the entire framework obtains strong real-time re-
sults on a real-world dataset far exceeding the complexity
of those used in [3, 6], in terms of speed, number and com-
plexity of object parts, occlusions, and the critical need for
a detection ability.

2. Proposed Method
A concise overview of the proposed method is shown in

Fig. 1. The method extracts a variety of low-level visual
cues from stereo video. These cues are combined with (a
priori known) model information such as shape and appear-
ance in order to update the six degrees-of-freedom (DOF)
pose of multiple objects or object parts. A time-varying
set of structural constraints are enforced between differ-
ent model parts (e.g. hinges, slides) and/or between dif-
ferent models (e.g. to restrict motion to a common ground

plane). The nature of these constraints is changed contin-
uously, based on the current visibility of the scene, using a
novel rigidization framework that rigidly attaches the min-
imal required number of unseen parts to the rest of the ob-
ject. Finally, the model information (satisfying the active
constraints) is continuously fed back to facilitate cue ex-
traction.

2.1. Scene Representation

The modeled scene consists of multiple rigid objects or
object parts, each represented by a 3D textured wireframe
model. Self-occlusions and occlusions between different
modeled objects are handled by rendering the scene using
OpenGL. In addition, SIFT features are extracted from dif-
ferent viewpoints of each model and mapped onto the sur-
face.

2.2. Visual Cues

We rely on highly efficient GPU libraries for dense opti-
cal flow, model-based dense stereo, and SIFT feature extrac-
tion [20, 24]. The model depth obtained in the current frame
is used to initialize a coarse-to-fine stereo algorithm. This
enables the efficient extraction of stereo in scenes with large
disparity variability. In a similar way, the model texture at
the current frame is used to compute Augmented Reality
(AR) flow, which is the optical flow between a synthetically
generated image based on the current tracking hypothesis,
and the current image. This AR flow counters drift when
included in tracking and also provides an indication of how
well the hypothesized scene matches the observed [19]. It
is extensively used as reliability measure in the remainder.

2.3. Pose Tracking and Detection

Similarly to [6], we use a redundant representation where
the full pose of each rigid part is stored independently. Sec-
tion 2.3.1 describes how a rigid pose update can be obtained
from all the visual cues. In the presence of constraints, this
update is not actually performed, but instead used to impose
these constraints on the relative velocities between different
rigid pose updates. This is explained in Section 2.3.2. It
has been shown that pre-imposing the kinematic constraints
during tracking or imposing the constraints after tracking
(as done here) results in the same accuracy [3]. See [4] for
a description and analysis of Drummond’s method that is
more extensive than the one provided in the next sections.

2.3.1 Rigid Pose Tracking

The critical aspect here that allows both real-time perfor-
mance and a flexible constraint framework, is the ability
to separate the composition of the normal equations from
the constraint enforcement. This allows parallelizing the

tracking of individual parts in a GPU-friendly manner. Ini-
tially the problem is thus considered as a set of independent
6DOF rigid pose estimations. Considering one object, the
initial aim is to recover the rigid rotation and translation
that best explains the dense visual cues and transforms each
model point m = [mx, my, mz]

> at time t into point m′

at time t+ 1:
m′ = Rm+ t , (1)

with R the rotation matrix and t = [tx, ty, tz]
> the trans-

lation vector. The rotation matrix can be approximated:

m′ ≈ (1+ [ω]×)m+ t , (2)

with ω = [ωx, ωy, ωz]
> the rotation axis and angle. Each

stereo disparity measurement, d′, at time t + 1 is used to
construct an approximation, s′, to m′:

s′ =

 s′x
s′y
s′z

 =

 x s′z/f
y s′z/f
−f b/d′

 , (3)

with pixel coordinates x = [x, y]> (with nodal point as
origin), focal length f and b the baseline of the (rectified)
stereo rig. Next, the model point m corresponding to s′ is
obtained using the efficient projective data association al-
gorithm [1] that corresponds stereo measurements to model
points that project to the same pixel. By projecting the er-
ror on n = [nx, ny, nz]

>, the model normal vector in m, a
linearized version of the point-to-plane distance is obtained,
expressing the distance from the reconstructed points to the
plane tangent to the model [25]:

eS(t,ω) =
∑
i

([
(1+ [ω]×)mi + t− s′i

]
· ni

)2

. (4)

This strictly shape-based error measure is linear in the pa-
rameters of interest t and ω.

Another linear, but strictly motion-based, error measure
is derived from the differential motion equation from classi-
cal kinematics that expresses the 3D motion of a point, ṁ,
in terms of its 3D translational and rotational velocity:

ṁ = t+ [ω]×m . (5)

This can be used to express the optical flow ẋ = [ẋ, ẏ]> as
follows [15]:

ẋ =
(f tx − x tz)

mz
− x y

f
ωx + (f +

x2

f
)ωy − y ωz , (6)

ẏ =
(f ty − y tz)

mz
− (f +

y2

f
)ωx +

x y

f
ωy + xωz , (7)

which are linear in t and ω provided the depth of the point
is known. We obtain this depth mz by rendering the model

at the current pose estimate. Since we have two sources of
pixel motion (the optical flow o = [ox, oy]

> and AR flow
a = [ax, ay]

>), we have two error functions:

eO(t,ω) =
∑
i

‖ẋi − oi‖2 , (8)

eA(t,ω) =
∑
i

‖ẋi − ai‖2 . (9)

Both the linearized point-to-plane distance in the stereo case
and the differential motion constraint in the optical and AR
flow case now provide linear constraints on the same rigid
motion representation (t,ω) and can thus be minimized
jointly using the following rigid pose error function:

Er(t,ω) = eS(t,ω) + eO(t,ω) + eA(t,ω) . (10)

We can rewrite (10) as follows to expose the linearity:

Er(α) = (Fα− d)
>
(Fα− d) , (11)

where the rigid motion parameters are stacked into a screw

vector α =

(
ω
t

)
for convenience, and F and d are ob-

tained by gathering the sensor data according to (4),(6),(7).
This can be solved in the least-squares sense using the nor-
mal equations:

F>Fα = F>d . (12)

2.3.2 Articulated Pose Tracking

Drummond and Cipolla [6] pointed out that when a part’s
unconstrained velocity update α is modified into β, the
sum-squared error changes according to (β − α)>C(β −
α), with C = F>F. They showed how equality constraints
can be enforced between corresponding screw values after
transforming them to the same coordinate frame. For each
link between object parts p and q a coordinate frame Tp,q

and a set of constraints ckp,q, k = 1 . . .Kp,q are formulated.
The coordinate frame is chosen to simplify the constraint
formulation, and is typically aligned with the joint axis be-
tween the parts. The adjoint transformation [17]:

T = Ad(T) = Ad

([
R t
0 1

])
=

[
R [t]×R
0 R

]
,

(13)
can then be used to transform both screws into a joint frame
associated with the link and formulate each constraint as
follows:

(βp − βq)
>T >p,qckp,q = 0 . (14)

The nature and number of constraints Kp,q between two
parts determines either the joint type, full rigidity between
the parts, or lack of constraints. Each ckp,q is a column 6-
vector (typically taken from the identity matrix) that indi-
cates which DOFs are constrained. They can all be stacked

together as follows:

Cp,q =
[
c1p,qc

2
p,q . . . c

Kp,q
p,q

]
. (15)

All constraints for the link can then be expressed jointly as:

(βp − βq)
>T >p,qCp,q = 0Kp,q

. (16)

This constrained optimization problem can be solved by in-
troducing Lagrange multipliers for each link:

λp,q =
[
λ1p,qλ

2
p,q . . . λ

Kp,q
p,q

]>
. (17)

If we consider a simple three part chain consisting of grand-
parent part p, parent part q, and child part a, the following
is obtained when differentiating the Lagrange system to βq:

2Cq(βq−αq)−T >p,qCp,qλp,q +T >q,aCq,aλq,a = 06 . (18)

The first component is due to part q itself, the second due
to the parent of q and the third due to the child of q. The
second component is omitted at the root of the hierarchy,
and more instances of the third component are added in case
of multiple children.

Considering a simple two-part scenario with parent p and
child q, the solution can be obtained directly from the fol-
lowing matrix equation: 2Cp A

2Cq −A
A> −A>

 βp

βq

λp,q

 =

 2Cpαp

2Cqαq

0Kp,q

 ,

(19)
where A = T >p,qCp,q . The left-hand matrix can become
large, but it is sparse and symmetric and efficient numerical
procedures can be used to solve it, even for complicated ar-
ticulated objects. Figure 2B shows an example of the spar-
sity pattern of this matrix for a 12-part articulated object
with kinematic structure shown in Fig. 2A.

An iterative weighted least squares Tukey biweight M-
estimator [16] is used to increase the robustness to outliers.
Once the robust velocity updates are found, the articulated
pose is updated by propagating the new joint angles forward
through the kinematic chain. The entire procedure (render-
ing, segmentation, normal equations, ...) is then repeated
as in other ICP algorithms in order to deal with the non-
linearity of the problem. We typically use a total of three
robust and three ICP iterations.

Unlike the scenarios considered in [3, 6] we are inter-
ested in cases where certain parts are unobservable, a situa-
tion that occurs frequently in real-world scenarios. This has
two important implications. First of all the solution of the
Lagrange multipliers and the β values cannot be separated
as done in [3, 6] (this requires inverting the covariance ma-
trix C). Secondly the invisible parts need to be sufficiently
constrained by the visible parts. This is explained next.

1

2

3

4

5

6

7

8

9

10

11

12
A

B

C

10

11

12

7

8

9

4

5

6

1

2

3

1

2

35

4 8 6

7 11 9

10 12 D

Figure 2. Kubito object. (A) Kinematic structure, (B) sparsity pat-
tern of constraint matrix (19), (C) front and (D) back texture and
articulation axes (blue lines). The numbers in (A), (C), and (D)
correspond to the same part and are only shown for illustration.

1

2

35

4 8 6

7 11 9

10 12

1

2

35

4 8 6

7 11 9

10 12

1

2

35

4 8 6

7 11 9

10 12

1

2

35

4 8 6

7 11 9

10 12

A B C D

Figure 3. Visibility-based rigidization. Only the boxed object parts
are visible. The minimal links that need to be made rigid are shown
in solid lines. Links that can remain flexible are shown dotted.
In (A) the entire structure needs to be made rigid, in (B) no links
require rigidity, and (C,D) show intermediate non-trivial scenarios.

2.3.3 Rigidization Framework

When parts become invisible the constraint matrix may be
singular. We propose to counter this by enforcing the min-
imal number of additional rigidity constraints on the kine-
matic structure required to obtain an invertible matrix. The
intuition behind this is that in the absence of new observa-
tions, parts are assumed to remain in their last seen con-
figuration. This is expected to facilitate tracking once they
reappear.

This is effectively an inverse kinematics problem, how-
ever what is special in this case is that the structure is al-
lowed to change from frame to frame, depending on the
currently visible parts. Which links to fix is not straight-
forward and depends both on the kinematic hierarchy and
on the orientation of the joints. Consider the examples in
Fig. 3 that correspond to the Kubito-object of Fig. 2. In this
figure, visible parts are boxed, links that need to be made

SIFT

part
detection

consistent
tracker
state

consistent
detector

state

AR flow

AR flow

select
winner

update
tracking

optical
flow

model-
based
stereo

Figure 4. Combined tracking and detection. Dotted boxes refer to
visual cues. The consistent tracker state determines which SIFT-
based part detector is active according to (20).

rigid are shown solid, and links that can remain flexible are
shown dotted. If only one part is visible (A) the entire struc-
ture needs to be made rigid, whereas certain partial visibility
patterns do not require any rigidization (B). However, more
complex and non-trivial situations can occur as well (C,D).
In (D) for example the entire central structure is constrained
by parts 1 and 10 due to the relative orientation of the joints.
Note that we are always considering the incremental rather
than the absolute pose.

We have performed a search procedure here to obtain the
minimal rigidization pattern by evaluating the rank of the
left matrix in (19) for different visibility configurations. The
result is stored in a look-up table and allows us to instantly
select the minimal number of links that need to be fixed
depending on the current visibility. The object’s joints were
slightly bended during look-up table construction to avoid
ambiguous configurations.

2.3.4 Incorporating Detection

So far we have only considered how to update the artic-
ulated pose on the basis of the previous frame estimate.
This does not enable automatic initialization or recovery
in case of occlusions. We next explain how we extend a
RANSAC-based monocular perspective-n-point pose detec-
tor [2, 13] for rigid pose estimation, to the articulated case.
An overview is shown in Fig. 4. The detector exhaustively
matches image (2D) to model codebook (3D) SIFT key-
point descriptors considering one object (part) at a time in
order to improve accuracy. Which object or object part to
focus on is determined probabilistically and depends on the
current tracking reliability of that part:

p(o) =
1− r(o)∑
i

(
1− r(i)

) , (20)

with r(o) the reliability, determined by the proportion of
valid AR flow in the segment’s region [19]. The regions
are obtained by rendering the scene with custom OpenGL
shaders that provide the part index for each pixel. This at-
tention mechanism focuses the detector’s limited resources

on the least reliable part. As a result, in each frame, the
detector provides a rigid pose hypothesis for a new (possi-
bly previously unseen) part. To incorporate this novel part
pose into the current articulated pose estimate a consistent
update (one that satisfies the constraints) needs to be gener-
ated for the object as a whole. A consistent hypothesis can
be obtained efficiently in simulation as follows. The model
vertices (possibly subsampled for efficiency) are first con-
figured in the current consistent tracker state (or in an ini-
tial position at the start of the algorithm or when tracking is
lost). The update procedure from Section 2.3.2 and rigidiza-
tion framework from Section 2.3.3 are then used to gener-
ate velocity updates that incorporate the newly detected part
and satisfy the constraints. The already visible parts func-
tion both as initial and target position in this procedure. As a
result a new consistent state is obtained that minimizes dis-
crepancies from the previously visible and new parts. Since
this uses model vertices rather than image data, the exact 3D
velocities between current and target object parts are known
at all times, and the optimization can be performed directly
using (5) rather than (10) in (12). As a consequence this
procedure is quite robust and can resolve many situations.
Since it relies on linearizations internally, it does at times
get stuck in local minima. In this case, the AR flow gen-
erated with this incorrect hypothesis signals its low quality
and the detector/tracker winner selection will discard this
solution. A better hypothesis will likely be generated at
subsequent frames due to the probabilistic nature of the part
selection (20).

As shown in Fig. 4 AR flow is computed for both the
tracker and detector state in order to determine their relia-
bility. The detector state is only chosen if it improves upon
the tracker’s reliability for that part and does not negatively
affect the reliability of any other currently tracked part. A
part is considered visible if its proportion valid AR flow
exceeds 0.15. Once visible, it remains visible until suffi-
cient evidence is available to actively remove it. In this way
the rigidization is effectively used to continue tracking oc-
cluded parts. Occluded parts can then be picked up imme-
diately when they re-appear, without requiring the detector.

3. Processing Times
The timings mentioned in this section were obtained us-

ing an NVIDIA Geforce GTX 590 and an Intel Core i7. The
system relies heavily on the integration between OpenGL
and NVIDIA’s CUDA framework [14] in order to achieve
real-time performance. The low-level cue extraction uses
efficient coarse-to-fine algorithms to achieve frame rates
around 100 Hz [19]. Initially, the normal equations can
be composed independently and in parallel for each seg-
ment. The most time-consuming additional step required
as compared to single object tracking is assigning the valid
measurements to their respective segments (in accordance

Table 1. Multiple rigid object pose tracking frame rates (in Hz)

samples

parts 50,000 500,000

1 62 57
20 55 44

150 47 38

with the current pose estimates). For this, the segment in-
dices need to be sorted. Since the number of segments is
limited, an efficient radix sort can be used here [10]. The
computation of the normal and weighted normal equations
(for robust estimation) is carefully done, combining com-
position with compaction and subsequent reduction. An ap-
proximate median operation is used to obtain the scale of
the residuals, required by the re-weighting procedure. Ta-
ble 1 shows the achieved frame rates for different numbers
of tracked parts as a function of number of data samples
(optical flow, stereo, ...) used. The SIFT-based part detec-
tion runs independently on the GTX 590’s second GPU. Its
estimates are employed when available so that it does not
slow down the tracker. In our current implementation it pro-
vides a pose hypothesis at 20 Hz. The most computationally
demanding aspect of the constraint enforcement is solving
(19). The left-hand matrix is however sparse and symmetric
and can be solved efficiently using iterative methods in case
the system needs to be scaled to very complex articulated
objects. For the 12-part object considered here, we required
0.3 ms to solve the equation using the Eigen library [9] on
a single CPU core. In the examples shown here this was
performed 3 times in the detector simulations, and 9 times
in tracking (3 internal robust iterations and 3 external ICP
iterations). In total, the constraint enforcement increases
computation times by 5 ms, which still enables frame rates
exceeding 35 Hz on the above-mentioned hardware.

4. Comparative Evaluation
4.1. Real-world Sequences

We compare the proposed method to a number of alter-
natives using complex real-world stereo sequences. These
sequences were recorded using low quality webcams un-
der difficult illumination conditions and contain the Kubito-
object depicted in Fig. 2 as target. The dataset is available
on-line.1 Additional sequences with different objects are
shown in the supplemental material video. The Kubito ob-
ject’s pose is 17-dimensional (11 revolute joints, 3 trans-
lation, 3 rotation). Many parts of the object (3,4,9,10) are
untextured and the entire backside (Fig. 2D) contains very
little visual information. Figure 5 shows some examples of
the three sequences considered. In the wave sequence the

1http://www.karlpauwels.com

object is waved in front of the camera. In the box sequence
the object is folded and unfolded into a box and rotated. The
various sequence finally contains non-trivial configurations
that challenge the detector.

Obtaining the ground-truth 17D articulated pose for
these sequences is non-trivial and would involve multiple
cameras and/or intrusive visual or magnetic markers. In-
stead we have used a manual labeling approach. The three
sequences, each around 1,000 frames in length, were pro-
cessed using five different algorithms (see Sect. 4.2). Each
algorithm returns an articulated pose estimate together with
the number of parts it considers reliable. To evaluate these
estimates, we asked a naive human subject to count the
number of correctly identified parts. A total of 100 frames
were randomly selected from each sequence and the es-
timates obtained by all algorithms on these frames were
shown to the subject in random order so that the subject
could not identify the algorithm. The estimates were visu-
alized both as regions marked on the image (as in Fig. 5)
and as a 3D view rendered from a viewpoint different from
the camera to facilitate judging the pose.

4.2. Alternative Methods

We compare the performance of the proposed rigidiza-
tion method to four alternatives. The simplest, SIFT, con-
siders only the pose estimates as returned by the detector.
Contrary to its use in the real-time trackers, in this case
the detector is run multiple times on each frame, once for
each object part. Although far from real-time, in this way
its performance provides an indication of the basic infor-
mation available to the trackers for initialization and re-
covery. The second method, multi-object, is a real-time
variant that detects and tracks the different object parts in-
dependently, without enforcing the articulation constraints.
The third method, depth-only, retains all the components
of the proposed method (constrained detection and track-
ing, and rigidization) but relies on depth-only (AR flow is
only used to evaluate reliability). In this way the method is
comparable to other depth-only articulated ICP algorithms
[8, 21]. A final alternative considered, pseudo-inverse, uses
the Moore-Penrose pseudoinverse rather than the rigidiza-
tion framework to handle the singularity of (19) in the case
of invisible parts. This involves a Singular Value Decom-
position (SVD). The latter is not real-time capable but is
included to further justify the rigidization approach.

4.3. Results

Some example results obtained by the five algorithms on
the different sequences are shown in Fig. 5. The average
number of correctly (True Positives, TP) and incorrectly
(False Positives, FP) detected parts are summarized in Ta-
ble 2. Note that this number is much lower than the total
number of parts (12) but since the object undergoes com-

http://www.karlpauwels.com

Table 2. Average number of correctly (TP) and incorrectly (FP)
tracked parts (out of 12) for three different sequences

wave box various
TP FP TP FP TP FP

rigidization 4.30 0.05 2.19 0.28 2.56 0.14
pseudo-inverse 4.04 0.01 1.93 0.19 2.41 0.18
multi-object 4.15 2.02 2.11 2.94 2.05 3.19
SIFT 3.98 1.15 1.86 0.89 2.16 1.19
depth-only 0.66 1.36 0.25 1.06 0.46 0.67

plex foldings, only a small number of parts are visible in
each frame. In addition, the untextured parts are not picked
up by the detector.

The proposed rigidization framework outperforms all the
approaches in terms of correctly detected parts and ob-
tains similar performance to the pseudo-inverse method in
terms of incorrectly detected parts. The rigidization frame-
work outperforms the pseudo-inverse solution by maintain-
ing previously gathered evidence when the object is oc-
cluded. The multi-object method can extend SIFT’s part
detections over time, but can not resolve ambiguous parts
(e.g. 6 and 12 in Fig. 2) and its reliability evaluation suffers
from the small object parts’ sizes and general lack of tex-
ture. It is also unable to maintain previously seen structure
over time through rigidization. The SIFT results provide an
indication of the quality of the information provided to the
trackers, how well the trackers maintain it over time (the
increased TP relative to SIFT), and how well the trackers
evaluate their own reliability (the decreased FP relative to
SIFT). We should point out that many of the pose estimates
returned by multi-object and SIFT that were labeled cor-
rect by the human subject are clearly inferior to the ones
obtained by the constrained methods, since the latter can
minimize the error over the entire (consistent) structure. To
quantify this, more precisely measured ground-truth data
is required. Finally, the depth-only method performs very
weakly with this type of object, since the shape information
is insufficient to uniquely determine its pose. As can be seen
in the top and bottom rows of Fig. 5E the estimates typically
shift in a direction that is unconstrained by shape informa-
tion. Additional results on these and other sequences are
shown in the supplemental material video.

5. Discussion

As an alternative to the proposed rigidization frame-
work, a stationary prior could be imposed in a filtering
method. This however requires using the conventional kine-
matical approach in a pre- rather than post-imposed con-
straint method. This results in different normal equations
in each segment depending on the depth in the kinematic
chain, which is problematic for GPU implementation (dif-

ferent computations are required in each segment) and scal-
ing (the number of parameters involved grows with chain
depth). Another alternative explored here involves solving
the singular system using for example the Moore-Penrose
pseudoinverse, resulting in the smallest norm solution. This
is undesirable for two reasons. First of all such techniques
are much more computationally intense since they require a
SVD or some other rank-revealing operation, and secondly,
they lose the advantage of keeping the object in the last
known configuration, as confirmed by the results in Table 2.

The approach used here also allows different types
of (time-varying) constraints between relative object mo-
tion (such as planarity) and/or multi-camera configurations.
Such scenarios will be considered in future work.

In conclusion, we have presented a novel real-time artic-
ulated pose detection and tracking method and have demon-
strated how complex real-world situations can be success-
fully handled by continuously changing the object’s rigid-
ity structure. This has resulted in improved performance as
compared to a variety of alternative solutions.

Acknowledgments

This work has been supported by grants from the Eu-
ropean Commission (Marie Curie FP7-PEOPLE-2011-IEF-
301144 and TOMSY FP7-270436). The GPU used for this
research was donated by the NVIDIA Corporation.

References
[1] G. Blais and M. Levine. Registering multiview range data

to create 3D computer objects. IEEE PAMI, 17(8):820–824,
1995.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000.

[3] T. de Campos, B. Tordoff, and D. Murray. Recovering ar-
ticulated pose: a comparison of two pre and postimposed
constraint methods. IEEE PAMI, 28(1):163 –168, 2006.

[4] T. E. de Campos. 3D visual tracking of articulated objects
and hands. PhD thesis, Department of Engineering Science,
University of Oxford, 2006.

[5] M. de La Gorce, D. Fleet, and N. Paragios. Model-based 3D
hand pose estimation from monocular video. IEEE PAMI,
33(9):1793–1805, 2011.

[6] T. Drummond and R. Cipolla. Real-time visual tracking of
complex structures. IEEE PAMI, 24(7):932 –946, 2002.

[7] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real
time motion capture using a single time-of-flight camera. In
CVPR, pages 755–762, 2010.

[8] D. Grest, J. Woetzel, and R. Koch. Nonlinear body pose
estimation from depth images. Lecture Notes in Computer
Science, pages 285–292. 2005.

[9] G. Guennebaud, B. Jacob, et al. Eigen v3. http://
eigen.tuxfamily.org, 2010.

[10] J. Hoberock and N. Bell. Thrust: A parallel template library,
2010. Version 1.7.0.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

rigidization pseudo-inv multi-object SIFT depth-onlyA B C D E

Figure 5. Articulated poses estimated (and considered reliable) by the five algorithms on example frames from the wave (top row), box
(second row), and various (third and bottom rows) sequences.

[11] B. Jacquet, R. Angst, and M. Pollefeys. Articulated and re-
stricted motion subspaces and their signatures. In CVPR,
pages 1506–1513, 2013.

[12] N. Kyriazis and A. Argyros. Physically plausible 3D scene
tracking: The single actor hypothesis. In CVPR, pages 9–16,
2013.

[13] V. Lepetit and P. Fua. Monocular model-based 3D track-
ing of rigid objects. Foundations and Trends in Computer
Graphics and Vision, 1:1–89, 2005.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
NVIDIA Tesla: A unified graphics and computing architec-
ture. IEEE Micro, 28(2):39–55, 2008.

[15] H. C. Longuet-Higgins and K. Prazdny. The interpretation of
a moving retinal image. P. Roy. Soc. B-Biol. Sci., 208:385–
397, 1980.

[16] F. Mosteller and J. Tukey. Data analysis and regression: A
second course in statistics. Addison-Wesley Reading, Mass.,
1977.

[17] R. M. Murray and S. S. Sastry. A mathematical introduction
to robotic manipulation. CRC press, 1994.

[18] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full DOF
tracking of a hand interacting with an object by modeling
occlusions and physical constraints. In ICCV, pages 2088–
2095, 2011.

[19] K. Pauwels, L. Rubio, J. Dı́az Alonso, and E. Ros. Real-
time model-based rigid object pose estimation and tracking
combining dense and sparse visual cues. In CVPR, pages
2347–2354, 2013.

[20] K. Pauwels, M. Tomasi, J. Dı́az, E. Ros, and M. Van Hulle.
A comparison of FPGA and GPU for real-time phase-based
optical flow, stereo, and local image features. IEEE Transac-
tions on Computers, 61(7):999–1012, 2012.

[21] S. Pellegrini, K. Schindler, and D. Nardi. A generalisation of
the ICP algorithm for articulated bodies. In BMVC, 2008.

[22] G. Pons-Moll, A. Baak, J. Gall, L. Leal-Taixe, M. Muller,
H. Seidel, and B. Rosenhahn. Outdoor human motion cap-
ture using inverse kinematics and von Mises-Fisher sam-
pling. In ICCV, pages 1243–1250, 2011.

[23] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In CVPR,
pages 1297–1304, June 2011.

[24] C. Wu. SiftGPU: A GPU implementation of scale invari-
ant feature transform (SIFT). http://cs.unc.edu/

˜ccwu/siftgpu, 2007.
[25] C. Yang and G. Medioni. Object modelling by registration

of multiple range images. Image Vision Comput., 10(3):145–
155, 1992.

http://cs.unc.edu/~ccwu/siftgpu
http://cs.unc.edu/~ccwu/siftgpu

