
Pauwels, Karl and Kragic, Danica, "Integrated On-line Robot-camera Calibration
and Object Pose Estimation", IEEE International Conference on Robotics and
Automation, Stockholm, Sweden, 2016.

(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other users, including reprinting/ republishing this
material for advertising or promotional purposes, creating new collective works for
resale or redistribution to servers or lists, or reuse of any copyrighted components
of this work in other works.

Integrated On-line Robot-camera Calibration

and Object Pose Estimation

Karl Pauwels and Danica Kragic

Abstract— We present a novel on-line approach for extrinsic
robot-camera calibration, a process often referred to as hand-
eye calibration, that uses object pose estimates from a real-time
model-based tracking approach. While off-line calibration has
seen much progress recently due to the incorporation of bundle
adjustment techniques, on-line calibration still remains a largely
open problem. Since we update the calibration in each frame,
the improvements can be incorporated immediately in the pose
estimation itself to facilitate object tracking. Our method does
not require the camera to observe the robot or to have markers
at certain fixed locations on the robot. To comply with a limited
computational budget, it maintains a fixed size configuration
set of samples. This set is updated each frame in order to
maximize an observability criterion. We show that a set of size
20 is sufficient in real-world scenarios with static and actuated
cameras. With this set size, only 100 microseconds are required
to update the calibration in each frame, and we typically achieve
accurate robot-camera calibration in 10 to 20 seconds. Together,
these characteristics enable the incorporation of calibration in
normal task execution.

I. INTRODUCTION

To enable a robot to interact with objects observed by a

camera, and to learn from these interactions, it is invaluable

to know the pose of the camera in the robot’s reference

frame. This allows for the robot to situate perceived objects

with respect to itself, as illustrated in Fig. 1. The camera pose

can be obtained using a robot-camera calibration procedure,

often referred to as hand-eye calibration. Typically such

calibration requires a time-intensive procedure in which first

a fixed sequence of robot configurations are determined

and executed while a video is recorded. This video is

then processed off-line with a vision-based pose estimation

method in order to detect the pose of a calibration object or

markers attached to the robot. Finally a batch optimization

is performed to determine the calibration parameters. The

hand-eye calibration problem is not simply a pose estimation

problem since both the position or pose of the calibration

object and the camera pose with respect to the robot are

unknown. So as a side product of the calibration, the object’s

pose or position in world coordinates is obtained as well.

In many real-world situations, the camera pose relative

to the robot may change over time due to changing tem-

perature, humidity, or due to a contact or collision with

the environment. It may also be necessary to quickly add

The authors are with the Computer Vision and Active Perception
Lab, Center for Autonomous Systems, School of Computer Science and
Communication, KTH Royal Institute of Technology, Stockholm, Swe-
den, {kpauwels,dani}@kth.se. The authors gratefully acknowl-
edge the European projects RoboHow (FP7-ICT-288533) and RobDREAM
(H2020-645403). The GPUs used for this research were donated by the
NVIDIA Corporation.

811

312

1

499

77

934

A B

C D

Fig. 1. Our approach improves the robot-camera calibration (green in
A–C), in an on-line fashion by tracking natural objects in real-time (blue
in A–C). While the object is moved (blue trajectory in D), a fixed size
configuration set is updated to maximize the observability of the calibration
parameters. (D) shows the final set labeled by frame number with example
corresponding images in (A–C). The Supplemental Material Video, available
at https://youtu.be/Te_bMIK2TPs, shows the evolution of the
calibration and configuration set over time.

cameras to the robot, or even for the robot itself to pick up

a task-specific camera and put it back after completing the

task. The flexible use of multiple cameras can also simplify

object pose estimation [1] and arises naturally in multi-

agent collaboration scenarios. An efficient on-line approach

to camera calibration can be extremely useful in all these

situations.

If the calibration can be fully integrated with other on-

line visual processing, such as object pose estimation, the

calibration procedure can be simplified and become an

inherent part of the task execution itself, alleviating the

need for a specific calibration process. Current state-of-the-

art methods still require around five minutes for a complete

calibration [2] and are therefore not directly applicable to on-

line calibration, where only a few milliseconds are available

in each frame to incorporate the new information.

Speed is critical for integrating pose tracking and cali-

bration, and to allow both to complement each other. Our

proposed method achieves this by using a simplified problem

formulation and by leveraging a model-based pose estimation

method. We also propose to limit the amount of samples used

for calibration, and to select useful samples on-line based on

an observability measure, as illustrated in Fig. 1.

The model-based pose estimation method used in our

approach enables the use of everyday objects for calibration

and fully integrating the procedure in normal task execution.

It also allows for the use of more sophisticated calibration

objects and powerful matching approaches to simplify de-

tecting and tracking of these patterns.

II. RELATED WORK

The calibration problem considered in this work becomes

much simpler if the pose of the robot can be observed

directly from the camera. It is then straightforward to map

the camera into the robot’s reference frame. Although much

progress has been made on this problem [3]–[5], visual

robot pose estimation is still very difficult. The problem

can be somewhat simplified by attaching markers to the

robot [2], [6], [7] but this may not always be feasible and it

is still difficult to estimate the 3D position of the marker

in the camera frame accurately. For this reason, the less

informative 2D image projection of the marker is typically

used in the error formulation. Even with markers applied, the

poses of the markers with respect to the robot still need to

be determined and this also requires a hand-eye calibration

method.

The classical methods for hand-eye calibration use a set

of configurations consisting of two frames: the object pose

in the camera frame, and the robot frame of the last link

on which the camera is mounted. The relation between the

camera and robot can then be obtained by exploiting multiple

pairs of such observations [8], [9]. These methods are non-

iterative and very fast, but formulate the error in terms of

pose, which requires an arbitrary weighting between the

translation and rotation components. Classical approaches

also impose certain requirements on the configuration set

which makes it difficult to apply them in an on-line fashion.

These approaches however are still used to provide initial

estimates for the more recent iterative approaches. The latter

minimize a feature reprojection error in a similar way as

bundle adjustment approaches in computer vision [2], [7],

[10]. Our approach here relates to bundle adjustment in that

the scene structure is part of the parameter space. However,

instead of the 2D image position of a detected marker, we

use the 3D position of the calibration object, as provided by

a model-based pose estimation method. This simplifies the

error formulation. We do not aim to do a full calibration of

the camera’s intrinsics and lens distortion since these factors

are independent of the problem studied here. The simplified

error function allows us to easily formulate the Jacobian so

that we do not have to resort to costly numerical estimation

methods as done by the recent approaches [2], [10].

Recently there has also been work focusing specifically

on the problem of selecting a set of configurations that

maximizes the accuracy of the calibration while minimizing

the calibration time [7], [11], [12]. These works do not

consider on-line calibration and instead generate a batch

of configurations that is checked for marker visibility and

collision-free, and then subsample this batch before execut-

ing it on the robot. In order to evaluate marker visibility,

its approximate location needs to be known. Typically this

involves markers attached to the robot. These methods cannot

be used in on-line scenarios that involve static objects in

unknown positions, or where the robot is executing a specific

task.

There has been some work on on-line camera registra-

tion [6], [13] but here the marker pose with respect to the

robot is assumed to be known, and only the rigid camera

to body transform is estimated and filtered over time. The

term on-line has also been used in the context of hand-

eye calibration but referring to the use of natural scene

features to estimate the camera motion, using structure-from-

motion rather than object pose estimation methods [14]. Such

natural scene feature tracking is less robust in the small

object tracking scenario shown in Fig. 1. Apart from using a

formulation similar to the early work on hand-eye calibration,

in that work the configuration set still consists of pairs of

observations that need to cover the configuration space. The

problem of how to exploit a steady stream of trajectory

information is not dealt with by these methods.

We integrate our calibration method with a real-time

model-based pose estimation method. It is critical that the

calibration has minimal computational requirements. We

show that we require only 100 microseconds per frame. This

allows us to improve the accuracy in an on-line fashion and

arrive at highly accurate results in less than 20 seconds.

III. METHODOLOGY

Our approach relies on a real-time interaction between

calibration and model-based object pose estimation. The

object motion, estimated in the camera frame, is correlated

with the motion of robot parts, as obtained from forward

kinematics. We consider the two common scenarios depicted

in Fig. 2 where the camera can be either actuated (A) or static

(B). The calibration is updated every frame in our method

so that the improvements can be immediately exploited in

the object pose estimation. This allows for a more accurate

prediction of the object motion in response to the robot

motion. The improved object pose estimates in turn help to

further improve the estimated calibration. We first give a brief

overview of our pose estimation method. We then present

our proposed formulation of and solution to the calibration

problem, and explain how this can be accomplished on-line

and with minimal computational effort.

A. Model-based Pose Estimation

We rely on our previous work1 to estimate the pose of

known objects in the scene [1], [15]. This model-based

approach computes and integrates a variety of visual cues in

order to estimate and track the 6-DOF pose of multiple rigid

objects in real-time. It exploits different motion and depth

cues, as well as visual feature descriptors. The objects are

represented by textured meshes, which allows the method to

synthesize images according to currently hypothesized object

poses, see Fig. 3B. The pose is then updated to minimize

1ROS-module available at https://github.com/karlpauwels/
simtrack

W

O

A

C
O

C

W

G

actuated camera - object static in world static camera - object static in gripper tool frameA B

Fig. 2. Coordinate frames referred to in the (A) actuated and (B) static camera scenarios: A = arm, C = camera, O = calibration object, W = world or
robot, and G = gripper tool frame. In scenario (A) the goal of the calibration procedure is to estimate the transform between camera and arm, TAC , and
in scenario (B) the goal is to estimate the transform between camera and world, TWC .

object and robot pose predicted object appearanceA B

Fig. 3. (A) Blue outline shows the object pose as estimated through vision-
based pose estimation and green outline shows the robot pose as obtained
from the joint angle measurements. (B) Object appearance as predicted from
the estimated object pose and a textured wireframe model of the object. The
texture is overlaid in green and does not contain the specular reflections in
(A). The region occluded by the robot is also correctly discarded.

the difference between the actual observed image and this

synthesized image. Since the robot motion is known, this

prediction can be improved with improved calibration accu-

racy. The method can also incorporate mesh models of the

robot itself in the scene when synthesizing the images. The

more accurate the calibration, the more precise robot-object

occlusions can be predicted. This is especially relevant in the

static camera scenario of Fig. 2B where the calibration object

is occluded by the gripper, see also Fig. 3. The estimated

object pose and the robot pose from forward kinematics

are shown in Fig. 3A and the predicted object appearance

is overlaid in green in Fig. 3B. The more accurate the

calibration, the better the gripper occlusion can be predicted

and accounted for.

B. Robot-camera Calibration

For simplicity, we only use the estimated 3D position

of the calibration object in our calibration method, and not

its orientation. Since orientation and position are measured

in different units, it is difficult to appropriately scale their

influence on the error.

We don’t distinguish between robot and world frames

since the robot is assumed static in the world, only its arms

move. In the first scenario, Fig. 2A, we assume that the

object’s pose is static with respect to the world frame (W),

whereas in the second we assume it is static with respect to

the gripper tool frame (G). The derivation proceeds in the

same way in both cases. In this section we focus only on

the actuated camera scenario, but we elaborate more on the

static scenario in Section IV-C.

The arm frame (A) is on the last link to the camera and

there thus exists an unknown static transformation TAC that

connects the camera to the robot. For each image frame i
of the video sequence, the visual object tracker provides us

with the calibration object’s 3D position in the camera frame,

pi
C . We also obtain the arm pose, Ti

WA, from the joint angle

measurements and forward kinematics. Since the object’s

unknown position in the world frame, pW , is assumed static,

we can express the 3D measurement error in the camera

frame as follows:

ei = pi
C −TCA Ti

AW pW . (1)

The unknowns are TCA = T−1
AC and pW and appear as

a product in the error function. Note that additional static

scene information does not directly help in disambiguating

the problem since for every additional measurement pC

an additional variable pW needs to be estimated. Instead,

measurements need to be combined across multiple frames to

resolve the calibration problem. For simplicity, and as com-

monly done in this work [11], we assume that the joint angle

errors are negligible and that the Ti
AW , obtained through

the forward kinematics, are exact. Assuming Gaussian noise

in the measurements pi
C , we can obtain the maximum

likelihood estimates as the solution to the following least-

squares problem:

F (θ) =
∑

i

ei
⊤ei = f(θ)⊤f(θ) , (2)

where

f(θ) =
[

e1
⊤ . . . en

⊤
]⊤

, (3)

and the parameter space θ = {TCA, pW }. The error

function is highly nonlinear as it involves products of the

unknown parameters. To find the least-squares estimate, we

can linearize f using the Jacobian J(θ̃) = δf
δθ
(θ̃) at the

linearization point θ̃:

f(θ) = f(θ̃ +∆θ) ≈ f(θ̃) + J(θ̃)∆θ . (4)

To facilitate the derivation of the Jacobian we first expand

the measurement error (1) as follows:

ei = pi
C −RCA

(

Ri
AW pW + tiAW

)

− tCA , (5)

with R and t the rotation matrix and translation vector.

Note that we freely interchange here between homogeneous

and Cartesian coordinates. It can now be seen that each

measurement contributes to the Jacobian in the following

way:

δei
δpW

= −RCAR
i
AW , (6)

δei
δtCA

= −I3 . (7)

Regarding the rotation update, we express the Jacobian in

terms of the incremental rotation, linearized using the small-

angle approximation of the rotation matrix:

ei(ωCA) = −e[ωCA]×RCAp
i
A + pi

C − tCA (8)

≈ − (I3 + [ωCA]×)RCAp
i
A + pi

C − tCA (9)

=
[

RCAp
i
A

]

×
ωCA + . . . , (10)

where ω = [ωx, ωy, ωz]
⊤ corresponds to the incremental

rotation axis and angle, and [ω]× is the skew-symmetric

matrix corresponding to the vector cross-product. We have

compacted pi
A = Ri

AW pW +tiAW to condense the notation.

The partial derivative to the incremental rotation is now:

δei
δωCA

=
[

RCAp
i
A

]

×
. (11)

The linearized error function can be used in a Gauss-Newton

or Levenberg-Marquardt algorithm to iteratively update the

parameters:

∆θ = −
[

J(θ̃)⊤J(θ̃)
]−1

J(θ̃)⊤f(θ̃) . (12)

At each iteration the incremental rotation matrix is obtained

using the exponential map, and incorporated into the previous

estimate at iteration k − 1 to obtain the new estimate at

iteration k:

Rk
CA = e[ω

k

CA
]× Rk−1

CA . (13)

So far we have ignored the reliability of the object

pose estimates. The reliability in most visual 3D estimation

methods is inversely proportional to distance from the camera

since a larger triangulation baseline is obtained the closer the

object is to the image. Since we are dealing with a single

object here throughout the entire calibration sequence, we

simply perform a weighted least-squares optimization where

each sample is weighted by the inverse distance. So instead

of minimizing (2) directly, we use the weighted version:

ewi = wiei , (14)

where wi = 1/z(pi
C) with z(p) the depth-component of

p. Note that this is easier than formulating the projection

in (2) and is made possible due to the availability of 3D

object position information. This weighting can also be used

to incorporate other sources of reliability information, or to

implement an iteratively reweighted least-squares procedure

that can handle large outliers in the pose estimation [16].

C. On-line Calibration

In order to perform the calibration on-line with a limited

computational budget, we maintain and optimize a fixed size

set of samples over time. We refer to this as the configuration

set, S , in the remainder. Each sample j in this set consists

of the estimated object pose in the camera frame, p
j
C , and

the arm pose obtained through forward kinematics, T
j
AW . At

each time instance, the newly arriving sample is evaluated

against all other samples in the configuration set in order

to greedily maximize an observability index. In accordance

with [7], [12] we use the following index:

Ω =

nc
∏

j

σj

1

nc

(nr)
−

1

2 , (15)

where σj are the singular values obtained from the Singular

Value Decomposition of the Jacobian J, and nr and nc the

number of rows and columns of the Jacobian, equal to three

times the number of samples and nine respectively. This

observability index can be computed efficiently using the

following:

nc
∏

j

σj =
√

|J⊤J| , (16)

where |A| is the determinant of A. Maximizing the observ-

ability index, or the product of the singular values, is equal

to minimizing the Eigenvalues of
(

J⊤J
)−1

. The latter corre-

sponds to the covariance matrix of the parameter estimates.

By maximizing the index, we thus reduce the uncertainty

of the parameters. This determinant-based criterion has also

been shown to result in the most precise calibration from a

theoretical perspective [17].

Our proposed approach for maximizing the observability

on-line is summarized in Algorithm 1. Starting from an

initial estimate of the calibration parameters, we fill up the

configuration set with the samples corresponding to the first

image frames and update the estimate and index. We discuss

the initial estimate in more detail in Section IV. For each new

image frame, we evaluate the observability index obtained

by replacing each sample from the set with the new sample,

one sample at a time. We then perform the replacement for

the maximal index if it improves the index obtained in the

previous frame. We finally update the calibration estimate

and proceed with the next image frame.

Algorithm 1: On-line updating the configuration set

Input: N : configuration set size, L: sequence length,

initial estimate {T0
CA,p

0
W },

xt = {pt
C ,T

t
AW }:measurements at time t

Output: final estimate: {TL
CA,p

L
W }

// initialization

for t = 1 to N do
st = xt

S∗

N = {s1, . . . , sN}
// g() computes the observability index

Ω∗

N = g(S∗

N)
// h() updates the calibration estimate

{TN
CA,p

N
W } = h (S∗

N)
// on-line updating

for t = N + 1 to L do
S∪ = S∗

t−1 ∪ xt

j∗ = argmaxj g(S∪ \ sj)
Ω = g(S∪ \ sj∗)
if Ω > Ω∗

t−1 then
S∗
t = S∪ \ sj∗

Ω∗
t = Ω

{Tt
CA,p

t
W } = h (S∗

t)
else

S∗
t = S∗

t−1

Ω∗
t = Ω∗

t−1

IV. EXPERIMENTS

This section contains real-world calibration results ob-

tained in the actuated and static camera scenarios. Although

we do not consider algorithm initialization in this work, we

have found the method to be very robust to large errors in the

initialization values. In the examples below we initialize the

algorithm randomly and far from the solution. It is usually

easy to obtain a rough initial guess, or to improve upon a

previous calibration. In the absence of any prior knowledge

about the setup, a classical hand-eye calibration method can

also be used for initialization.

We also attempted a comparison with an iterated extended

Kalman filter using the measurement function Jacobian as

derived above (6),(7),(11). This problem is hard since mul-

tiple configurations are required in order to fully observe

the state and the problem is highly nonlinear. Due to the

linearization, the filter quickly diverged, unless the initial

state estimate was very close to the solution. The nonlinearity

of the problem appears better represented in the set of

configurations maintained by our method.

A. Computational Requirements

The computation time of the observability index (16)

scales linearly with increasing configuration set size, but

since it needs to be evaluated for each sample in the set,

the combined effect is superlinear. Very little time is actually

required with a small number of configurations, as illustrated

in Fig. 4. Even when maintaining 100 configurations, only

around one millisecond is required per frame to update the

0 20 40 60 80 100
0

0.5

1

configuration set size

c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

in
 m

s
e
c
)

Fig. 4. Computation times scale superlinearly with configuration set size.
Accurate results can be obtained with as little as 20 configurations, and
require around 100 microseconds per frame.

calibration. These times were obtained with a C++ imple-

mentation running on a single core of an Intel Core i7-4790K

CPU. In the remainder we always used a configuration set

of size 20, which only required 100 microseconds.

B. Actuated Camera

We first consider the scenario with a camera rigidly

attached to the robot as shown in Fig. 2A. For this example

we used the left arm camera of the PR2 robot. The calibration

object is assumed static in the scene. Determining whether

or not this is actually the case is outside the scope of this

work.

For initialization, we set pW = [0, 0, 0]⊤ and randomly

displaced TCA from the PR2’s factory calibration, which is

not very accurate, according to a randomly generated rigid

transform with translation magnitude of one meter and a

rotation angle of 90 degrees applied to a random rotation

axis. This initial configuration is shown in Fig. 5A, overlaid

in green, and is clearly far from the solution. Since we used

a configuration set of size 20, the first estimate relied on the

first 20 frames. This already greatly improved the estimate,

see Fig. 5B, but the hand and base were still misaligned.

We continued by manually moving the camera above and

away from the object. The final estimate of the complete

camera path over the course of the calibration is illustrated

in Fig. 6B. This figure also highlights the camera positions

that were part of the final configuration set. Note how this

set efficiently summarizes the camera’s trajectory, and retains

frames that correspond to widely-separated configurations.

Interestingly, the final configuration typically contains short

subsequences. This can be related to the critical factors

and criteria for improving hand-eye calibration accuracy

identified in [18]. One of the criteria states that small

translational movements of the hand can improve the error

in the translation component of the calibration [19].

Fig. 6A contains the evolution of the root mean squared

error (RMSE) of the error function (2), evaluated over the

entire sequence, together with the observability index (16).

The RMSE is computed using the weighted version (14), but

the weights are normalized, so that the error still corresponds

to a distance measure. The measurements are only shown

in Fig. 6A when the configuration set is updated. The

RMSE quickly drops below one centimeter. For comparison,

we also show the RMSE using an exhaustive estimation

frame 1 frame 20 frame 172 frame 721A B C D

frame 1 frame 20 frame 250 frame 960E F G H

frame 1I frame 939J

Fig. 5. Snapshots from the on-line calibration procedure applied to real-world sequences involving an actuated camera (A–D), a static camera on the robot
(E–H), and a static camera external to the robot (I–J). The robot’s right arm is not shown in panel (J) since it was broken at the time of the experiment
and the joint encoder offsets were unknown. The full sequences are shown in the Supplemental Material Video.

that incorporates all measurements up to the current frame,

see solid line in Fig. 6A, and which can be considered

optimal for this problem. The proposed on-line estimation

behaves very similar to the exhaustive estimation, but uses

far fewer computational resources. The observability measure

stabilizes after about 400 frames. This stabilization can

be detected and used as a stopping criterion, but we did

not consider this in this work. Note also how larger gaps

occur later in the sequence indicating that the calibration

is stabilizing and the configuration set does not require

further updates. After frame 800, the new samples no longer

improve the observability. We show two more frames from

the sequence in Fig. 5C,D. Fig. 5C shows the improvements

after about six seconds, and Fig. 5D shows the end of the

sequence, where the calibration has stabilized. The latter

shows how both the gripper and robot base and body are

very accurately projected in the image. It also shows the high

dynamic range over which the pose estimation algorithm can

track the object. The evolution of tracking and calibration for

the entire sequence is shown in the Supplemental Material

Video.

C. Static Camera

The second scenario requires a static camera, either con-

nected to or external to the robot, to be calibrated with

respect to the robot. This can be accomplished by rigidly

attaching the calibration object to the robot, as illustrated in

Fig. 2B, and presenting it to the camera in various poses.

Since the object is now being moved by the robot, it is

no longer static in the world frame, as in the actuated

camera scenario. It is however static with respect to the robot

gripper. Using the frames illustrated in Fig. 2B we can thus

reformulate the (unweighted) measurement error as:

ei = pi
C −TCW Ti

WG pG . (17)

This has exactly the same form as (1) with regard to

parameters and measurements, and also the Jacobian can

be derived in the same way by replacing the corresponding

frames.

We show results for two different setups in this section.

In the first we used the PR2’s head-mounted Kinect camera

and considered it static, see Fig. 5E–H. We did not use the

depth signal for object tracking to make the results more

comparable across the different experiments. For the second

arm camera RMSE and observability arm camera path and final configurationA B

head camera RMSE and observability object path and final configurationC D

−0.20 0.2

−0.3−0.2−0.100.1
0.4

0.5

0.6

0.7

0.8

0.9

X (in m)

960959

770769768

390

767766

545544543

447

46

446

47

445

338

Y (in m)

846

224232
Z

(in
m

)

0.2
0.4

0
0.2

0.4
0.6

0.7

0.8

0.9

173172171170
68697071

310311312

390389391388

Y (in m)

768

X (in m)

692694

722720

Z
(in

m
)

external camera RMSE and observability object path and final configurationE F

−0.2 0 0.2 0.4 −0.200.20.4

0.8

1

1.2

1.4

1.6

1.8

Y (in m)

408407406

957958954953950

483484485486

633634635636

587

727

816

1

X (in m)

Z
(in

m
)

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

frame index

R
M

S
E

(in
m

)

0 200 400 600 800 1000
0

0.1

0.2

ob
se

rv
ab

ili
ty

in
de

x

RMSE online
RMSE exhaustive
observability

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

frame index

R
M

S
E

(in
m

)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5
ob

se
rv

ab
ili

ty
in

de
x

RMSE online
RMSE exhaustive
observability

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

frame index

R
M

S
E

(in
m

)

0 200 400 600 800 1000
0

0.2

0.4

0.6

ob
se

rv
ab

ili
ty

in
de

x

RMSE online
RMSE exhaustive
observability

Fig. 6. Calibration results using the PR2’s arm camera (A,B), head-mounted Kinect (C,D), and an external camera (E,F). (A,C,E) contain the evolution
of the RMSE for the on-line procedure and the exhaustive estimation (using all preceding frames), together with the observability measure. The RMSE is
always evaluated on the complete sequence. (B) Camera path for the actuated camera scenario together with the samples contained in the final configuration
set, as marked by the camera symbols and labeled with frame number. (D,F) Same as (B) for the static camera scenarios but showing the object pose
trajectory in the camera frame.

setup we used a Logitech C920 HD webcam, mounted on

a tripod external to the robot, see Fig. 5I–J. This camera

provided 1920×1080 resolution video at 30 Hz to the tracker.

In the first setup, the initial state is again randomly dis-

turbed with translation magnitude one meter and 90 degrees

rotation offset and, as illustrated in Fig. 5E, clearly far from

the solution. After accumulating the first 20 frames in the

initial configuration set, the estimate shown in Fig. 5F was

obtained. Although much more accurate, the projected grip-

per pose was further off than in the previous scenario. The

particular object used here is very reflective as can be seen

in Fig. 5E,F. This highlights the importance of using a robust

object tracking framework for calibration. Fig. 6C shows the

evolution of the RMSE and observability over the course

of the sequence. The observability index again stabilizes

towards the end of the sequence and fewer updates occur later

in the sequence. Fig. 6D now shows the object path in the

camera frame, as estimated by the vision algorithm, with the

camera symbols highlighting the object poses of the samples

in the final configuration set. As before, the set compactly

represents the trajectory of the calibration object over the

entire sequence. Two more frames are shown in Fig. 5G,H

acquired in the middle and at the end of the sequence. Both

show a precise alignment of the projected robot pose in the

camera image. See the Supplemental Material Video for the

evolution of the calibration over the complete sequence.

We also obtained highly accurate results in the second

setup with an external camera, see Fig. 5J. Fig. 5I contains

the initial state, which was now randomly disturbed from

the zero position. The PR2’s right arm is not shown in

Fig. 5J because it was broken at the time of the experiment.

This made it impossible to calibrate the joint encoder offsets

and rely on the forward kinematics. Fig. 6E,F again show

a similar evolution of the RMSE, observability, and object

path during calibration.

Fig. 5 also demonstrates the usefulness of integrating

calibration and tracking for occlusion detection. At the initial

state, Fig. 5F, it is difficult to correctly discard the region

occluded by the gripper in tracking. In fact, the predicted

robot occlusion covers up a visible part of the object. We

only consider occlusions later on in the calibration. Once

the calibration is more accurate, Fig. 5G, the occluded region

can be ignored and the grasped object can be tracked more

easily.

V. CONCLUSIONS

We have proposed a highly efficient on-line robot-camera

calibration method that is embedded in a model-based pose

estimation algorithm. Our approach is simple and can be

used to calibrate actuated as well as static cameras. We

have demonstrated experimentally that precise results can be

obtained with a modular approach where intrinsic camera

calibration and pose estimation are performed separately

from robot-camera calibration, as opposed to optimizing

all parameters simultaneously. Our approach allows using

everyday objects for calibration, provided their models are

available, and can extract calibration information from natu-

ral pose trajectories. This opens up the possibility to better in-

tegrate calibration with task execution, e.g. by automatically

switching to a calibration mode for the actuated cameras once

the scene is known to be static. This could be determined

on the basis of an independent sensor, such as a static head

camera. In turn, when an object is known to be grasped

rigidly, e.g. based on tactile sensor feedback, a calibration

mode can be activated for the static cameras as well. Future

work will concentrate on using the observability obtained

on-line to guide the robot motion itself towards regions that

are more likely to improve calibration.

REFERENCES

[1] K. Pauwels and D. Kragic, “Simtrack: A simulation-based framework
for scalable real-time object pose detection and tracking,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Hamburg,
Germany, 2015, pp. 1300–1307.

[2] O. Birbach, U. Frese, and B. Buml, “Rapid calibration of a multi-
sensorial humanoids upper body: An automatic and self-contained
approach,” The International Journal of Robotics Research, vol. 34,
no. 4-5, pp. 420–436, Apr. 2015.

[3] P. Hebert, N. Hudson, J. Ma, and J. Burdick, “Dual arm estimation
for coordinated bimanual manipulation,” in ICRA, 2013, pp. 120–125.

[4] X. Gratal, C. Smith, M. Björkman, and D. Kragic, “Integrating 3D
features and virtual visual servoing for hand-eye and humanoid robot
pose estimation,” in 2013 13th IEEE-RAS International Conference on

Humanoid Robots (Humanoids), Oct. 2013, pp. 240–245.
[5] T. Schmidt, R. Newcombe, and D. Fox, “DART: Dense articulated

real-time tracking,” Proceedings of Robotics: Science and Systems,

Berkeley, USA, 2014.
[6] N. Dantam, H. B. Amor, H. Christensen, and M. Stilman, “Online

camera registration for robot manipulation (presented),” in Interna-

tional Symposium on Experimental Robotics, 2014.
[7] D. Maier, S. Wrobel, and M. Bennewitz, “Whole-body self-calibration

via graph-optimization and automatic configuration selection,” in
ICRA, May 2015, pp. 5662–5668.

[8] R. Tsai and R. Lenz, “Real time versatile robotics hand/eye calibration
using 3D machine vision,” in ICRA, Apr. 1988, pp. 554–561 vol.1.

[9] K. Daniilidis, “Hand-Eye Calibration Using Dual Quaternions,” The

International Journal of Robotics Research, vol. 18, no. 3, pp. 286–
298, Mar. 1999.

[10] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a Multi-arm
Multi-sensor Robot: A Bundle Adjustment Approach,” in Experimen-

tal Robotics, O. Khatib, V. Kumar, and G. Sukhatme, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, vol. 79, pp. 211–225.

[11] Y. Sun and J. Hollerbach, “Active robot calibration algorithm,” in
ICRA, May 2008, pp. 1276–1281.

[12] H. Carrillo, O. Birbach, H. Taubig, B. Bauml, U. Frese, and J. Castel-
lanos, “On task-oriented criteria for configurations selection in robot
calibration,” in ICRA, May 2013, pp. 3653–3659.

[13] N. Dantam, H. B. Amor, H. Christensen, and M. Stilman, “Online
multi-camera registration for bimanual workspace trajectories (pre-
sented),” in International Conference on Humanoid Robots, 2014.

[14] N. Andreff, R. Horaud, and B. Espiau, “On-line hand-eye calibration,”
in 3-D Digital Imaging and Modeling, 1999. Proceedings. Second

International Conference on, 1999, pp. 430–436.
[15] K. Pauwels, L. Rubio, and E. Ros, “Real-time pose detection and

tracking of hundreds of objects,” IEEE Transactions on Circuits and

Systems for Video Technology, 2015.
[16] F. Mosteller and J. Tukey, Data analysis and regression: A second

course in statistics. Mass.: Addison-Wesley Reading, 1977.
[17] Y. Sun and J. Hollerbach, “Observability index selection for robot

calibration,” in ICRA, May 2008, pp. 831–836.
[18] R. Tsai and R. Lenz, “A new technique for fully autonomous and

efficient 3D robotics hand/eye calibration,” IEEE Transactions on

Robotics and Automation, vol. 5, no. 3, pp. 345–358, June 1989.
[19] J. Schmidt and H. Niemann, “Data Selection for Hand-eye Calibra-

tion: A Vector Quantization Approach,” The International Journal of

Robotics Research, vol. 27, no. 9, pp. 1027–1053, Sept. 2008.

