
Pauwels, Karl and Kragic, Danica, "SimTrack: A Simulation-based Framework for Scalable
Real-time Object Pose Detection and Tracking", IEEE/RSJ International Conference on
Intelligent Robots and Systems, Hamburg, Germany, 2015.

(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other works.

SimTrack: A Simulation-based Framework for
Scalable Real-time Object Pose Detection and Tracking

Karl Pauwels and Danica Kragic

Abstract— We propose a novel approach for real-time object
pose detection and tracking that is highly scalable in terms
of the number of objects tracked and the number of cameras
observing the scene. Key to this scalability is a high degree of
parallelism in the algorithms employed. The method maintains
a single 3D simulated model of the scene consisting of multiple
objects together with a robot operating on them. This allows for
rapid synthesis of appearance, depth, and occlusion information
from each camera viewpoint. This information is used both for
updating the pose estimates and for extracting the low-level
visual cues. The visual cues obtained from each camera are
efficiently fused back into the single consistent scene represen-
tation using a constrained optimization method. The centralized
scene representation, together with the reliability measures it
enables, simplify the interaction between pose tracking and
pose detection across multiple cameras. We demonstrate the
robustness of our approach in a realistic manipulation scenario.

We publicly release this work as a part of a general ROS
software framework for real-time pose estimation, SimTrack,
that can be integrated easily for different robotic applications.

I. INTRODUCTION

Dexterous manipulation requires fast and precise pose
information of the manipulated objects. Real-time visual per-
ception, specifically model-based pose tracking, can greatly
contribute to obtaining such information, and is in fact
critical in uncontrolled environments where interaction with
humans is required.

To ensure accurate pose tracking throughout the interac-
tion, the placement of the camera is very important. The
commonly used combined color/depth (RGB-D) cameras are
frequently head-mounted. This provides a good overview of
the scene and respects the minimal distance from the scene
required to obtain a valid depth signal. However, it makes
it more difficult to track the pose of small objects. The end
effector also frequently occludes parts of the scene or the
interaction in a head-mounted configuration. Alternatively, in
visual servoing scenarios, the camera is often mounted close
to or on the end effector (eye-in-hand). Although control is
simplified, only local effects are considered and the overview
of the scene is lost.

Most of these problems can be overcome using multiple
cameras. By combining arm and head cameras, the field of
view can be modified dynamically thus greatly increasing
the likelihood of at least one camera perceiving the object.

The authors are with the Computer Vision and Active Perception
Lab, Center for Autonomous Systems, School of Computer Science and
Communication, KTH Royal Institute of Technology, Stockholm, Sweden,
{kpauwels,dani}@kth.se. The authors gratefully acknowledge
the European FP7 project RoboHow (FP7-ICT-288533). The GPUs used
for this research were donated by the NVIDIA Corporation.

In addition, if an object is visible in multiple cameras, visual
features can be combined across cameras to increase local-
ization accuracy, cf. wide baseline stereo. In most current
approaches however, incorporating multiple cameras greatly
increases computational requirements, which excludes their
use in real-time applications. To counter this, we propose
a scalable method that can detect and track in real-time the
pose of multiple rigid objects from multiple cameras attached
to moving robotic manipulators. The method is robust to
calibration errors and exploits both appearance and depth
information, depending on availability.

We present three main contributions:

1) our approach exploits a high degree of parallelism to in-
tegrate dense visual cues with a highly detailed simulated
model of the scene in a scalable manner,

2) we achieve an increased accuracy in pose estimation
using multiple cameras for a complex scene containing
multiple objects,

3) we release the source code as a unified ROS software
framework for pose estimation: SimTrack1.

In the next section, we discuss our contributions with
respect to the state-of-the-art in this area. We then explain
our multi-camera pose tracking approach and how it interacts
with pose detection. This is followed by an experimental
evaluation of the scalability and accuracy achieved by the
method, together with a demonstration in a real-world stack-
ing scenario. We conclude by pointing out several research
avenues that can benefit from our approach.

A. Related Work

In the visual servoing literature it is common to rigidly
attach cameras to robotic manipulators [1]. Recent extensions
also consider multiple cameras simultaneously [2]. Unlike
the template-based target alignment considered in the visual
servoing literature, we are concerned here with estimating the
full six degrees-of-freedom (DOF) pose of multiple objects,
and keeping it consistent across multiple moving cameras.
Multi-camera tracking has been explored previously [3], [4]
but relying only on edge-like visual cues and not considering
the interaction with object pose detection, the presence of a
robot in the scene, or having the cameras move with respect
to each other. Simulated models of the scene are also used in
more recent sampling-based tracking approaches, but these
methods require heuristic optimization techniques to scale to
larger numbers of degrees of freedom [5].

1https://github.com/karlpauwels/simtrack

object model
- geometry

- appearance
- keypoints

object model
- geometry

- appearance
- keypoints

RGBD
camera 1

constrained multi-object
updates (world frame)

- geometry
- kinematics

- geometry
- appearance
- keypoints

camera/object
selection

reliability
object poses

pnp RANSAC

WINNER
SELECTION

- appearance
- segments

SIFT keypoints

POSE TRACKING

POSE DETECTION

visual
proprioception

camera 2
camera n object 1

object 2
object k

appear-
ance

pose
updates

keypoint
model

joint
state

SIMULATION
ROBOT

AR flowAR flowAR flow

AR flowAR flowAR flow

optical flow
AR flow

robust multi-object
updates (camera frame)

camera 1

camera 2
camera n

appear-

ance

(world frame)

- normals
- depth

camera
frames

robot model

object model
RGB(D)

camera 1

robot/object poses

Fig. 1. Method overview (AR = augmented reality, pnp = perspective-n-point).

The work presented here naturally extends our previous
work on real-time pose estimation [6] to the multi-camera
case. A variety of multi-object pose detection methods are
available [7]–[9], some also explicitly considering the multi-
camera scenario [7], [10]. The main advantages of our work
are the high tracking speed and the simpler integration of
detected and tracked poses.

Calibration is an important issue in a system where
multiple cameras are rigidly attached to moving robotic
manipulators [11]. Calibration errors can never be completely
eliminated, and should instead be corrected on-line [12].
Although this aspect is outside the scope of this work, we do
demonstrate a high robustness to such calibration errors. This
makes our method a clear candidate for on-line calibration.

A number of open source software frameworks exist for
pose estimation and tracking, most notably ARToolkit [13],
BLORT [14], and ViSP [15]. None of these however maintain
a scene representation with robot, objects, and multiple
cameras. They also do not exhibit the performance scaling
provided by the SimTrack framework.

II. METHODOLOGY

Our approach relies on a continuous real-time interaction
between visual simulation and visual perception, guided by a
detailed 3D representation of the tracked objects and robot in
world coordinates, see Fig. 1. This simulation interacts with
perception, pose tracking, and pose detection by synthesizing
multiple moving viewpoints together with the corresponding
visual proprioceptive signals.

A. Scene Simulation

The appearance and geometry of the scene are repre-
sented as textured meshes. The object meshes are obtained

using 3D object reconstruction software [16] and the robot
mesh is specified using the unified robot description format
(URDF). The object meshes are also augmented with SIFT
features [17] extracted from different viewpoint renderings of
the models. We use a graphics rendering engine to maintain a
single representation of the scene in world coordinates [18].
This representation is continuously updated based on the
estimated poses and the robot’s joint state. Custom OpenGL
shader-code allows us to rapidly synthesize the appearance,
segments, depth, and normals from arbitrary viewpoints,
while correctly accounting for occlusions between objects
and robot. An example of the information synthesized for
one viewpoint is shown in Fig. 2E–H.

B. Sensor Data and Visual Features

We use ROS to obtain sensory data from a Willow Garage
PR2 robot [19]. Specifically we stream 640×480 images
from the left and right arm cameras, one 640×480 RGB-D
image from the head-mounted Kinect, and the joint angles.
The depth from the Kinect sensor is mapped to the RGB
image. Figure 2A–D shows an example of the data received
from the cameras. The signals are synchronized at 30 Hz,
compressed, and send to a remote system equipped with two
NVIDIA Geforce GTX Titan GPUs.

We extract the same low level visual cues as in our
previous work, namely dense optical flow, dense augmented
reality (AR) flow, and SIFT features [6]. AR flow represents
the motion between the currently hypothesized appearance of
the scene as generated by the rendering engine, see Fig. 2E,
and the observed image, see Fig. 2A. This cue is critical as
it serves the dual purpose of countering drift in tracking and
enabling reliability evaluation [20], see Section II-D. The
dense optical and AR flow are estimated using multiscale

� � � �

� � � �

���������	��
� �	
�������	��
������
	�����	��
� �����
	����������

���	��
� ������������	�����
����� �����

Fig. 2. Camera inputs (A–D) and scene representation (E–H) corresponding to the left arm camera.

Gabor phase-based algorithms [21].

C. Object Pose Tracking

We previously used the approach by Drum-
mond & Cipolla [4] to extend our rigid pose estimation
work to the articulated case [22]. Here we present a
similar extension to the case of multiple moving cameras.
Essential to the scalability of our method is maintaining
the pose of each object separately in each camera frame,
i.e. with redundant degrees of freedom. As we will show
in this section, it enables for separating the expensive
computation of the pose updates in each camera frame from
the enforcement of the multi-camera constraints on these
pose updates.

1) Single Camera: The goal of pose tracking is recovering
the rigid rotation and translation that transforms each model
point m = [mx, my, mz]> at time t into point m′ at time
t+ 1 in accordance with the observed visual cues:

m′ = Rm + t , (1)

with R the rotation matrix and t = [tx, ty, tz]> the
translation vector. By approximating the rotation matrix this
can be simplified to:

m′ ≈ (I + [ω]×)m + t , (2)

with ω = [ωx, ωy, ωz]> the rotation axis and angle, and
[ω]× the skew-symmetric matrix corresponding to the vec-
tor cross-product. The point-to-plane iterative closest point
error [23] provides a linearized relation between the observed
3D point d′ = [d′x, d

′
y, d

′
z]> that corresponds to m′, and the

required pose change:

ed(t,ω) =
∑
i

([
(I + [ω]×)mi + t− d′i

]
· ni

)2

, (3)

where ni is the normal vector synthesized in the camera
frame, see Fig. 2H. The correspondences are obtained using

projective data association. If we consider an infinitesimal
rather than discrete pose change, (2) corresponds to the
differential motion equation of classical mechanics:

ṁ = [ω]×m + t , (4)

with ṁ the 3D motion of m. After applying perspective
projection with focal length f , and assuming for simplicity
that the nodal point projects to the image center, the optical
flow ẋ = [ẋ, ẏ]> can be described as [24]:

ẋ =
(f tx − x tz)

mz
− x y

f
ωx + (f +

x2

f
)ωy − y ωz , (5)

ẏ =
(f ty − y tz)

mz
− (f +

y2

f
)ωx +

x y

f
ωy + xωz . (6)

Note that we obtain the depth mz by rendering the model
at the current pose estimate. This allows the approach to
also work in monocular configurations. Since we have two
sources of pixel motion, the optical flow o = [ox, oy]> and
AR flow a = [ax, ay]>, we have two error functions:

eo(t,ω) =
∑
i

‖ẋi − oi‖2 , (7)

ea(t,ω) =
∑
i

‖ẋi − ai‖2 . (8)

Both the linearized point-to-plane distance in the depth case,
ed, and the differential motion constraint in the optical and
AR flow case, e{o,a}, now provide linear constraints on
the same rigid motion representation (t,ω). Therefore their
combined error can also be expressed with a linear error
function:

E(α) = (Fα− d)
>

(Fα− d) , (9)

where the rigid motion parameters are stacked for conve-

nience, α =

(
t
ω

)
, and F and d are obtained by gathering

the sensor data according to (3), (7), and (8). This can be
solved in the least-squares sense using the normal equations:

F>Fα = F>d . (10)

Since the normal equations can be composed independently
for each object and camera, a high degree of parallelism is
introduced in the approach.

2) Multiple Static Cameras: In the presence of noise and
calibration errors, the solutions to the normal equations are
not guaranteed to be consistent across multiple cameras.
Drummond and Cipolla [4] pointed out that the normal
equations can be used to evaluate the increased error for
a suboptimal pose update. Specifically, if an unconstrained
velocity update α is modified into β, the sum-squared
error changes according to (β − α)>C (β − α), with
C = F>F. They also showed how equality constraints
can be enforced between pose updates obtained in different
coordinate frames. The updates can be transformed to a
shared coordinate frame, in our case the world frame, using
the adjoint transform that corresponds to the current camera
frame. This frame is derived from the robot’s joint state. The
adjoint transformation is given by [25]:

T = Ad(T) = Ad

([
R t
0 1

])
=

[
R [t]×R
0 R

]
.

(11)
Our problem can then be formulated as a constrained opti-
mization problem that aims to minimize the error increase
in the original camera-centric optimizations, while satisfying
the inter-camera constraints. Concretely, we aim to minimize
the following cost:∑

c∈{h,l,r}

(βc −αc)
>Cc (βc −αc) , (12)

where h, l, r refers to the head-mounted Kinect, left arm,
and right arm camera respectively. An easy way to express
the camera relationships is to construct a hierarchy with one
camera arbitrarily chosen as root. If we select the head-
mounted Kinect as root here (note that this choice does not
affect the results), two sets of constraints need to be enforced:
one between the Kinect and the left arm camera (16), and
one between the Kinect and the right arm camera (17).
The constrained optimization problem can be solved by
introducing Lagrange multipliers for each constraint, namely
λh,l and λh,r. Setting the partial derivatives of the Lagrange
system to zero then yields the following linear system of
equations:

2Chβh + T >h λh,l + T >h λh,r = 2Chαh (13)
2Clβl − T >l λh,l = 2Clαl (14)

2Crβr − T >r λh,r = 2Crαr (15)
Thβh − Tlβl = 06 (16)
Thβh − Trβr = 06 . (17)

Solving this system yields the constrained pose updates
β{h,l,r}. This approach fuses the available information ac-
cording to the number of motion and depth measurements

available in each view. This can be weighted differently if
required depending on task constraints. Objects that are not
visible in all cameras do not require any modification. To
increase robustness, we apply an iteratively reweighed least
squares procedure based on Tukey’s bisquare function [26]
to the normal equations (10) before fusing them.

3) Moving Cameras and Non-linearity: So far we have
assumed static cameras. Camera motion needs to be dealt
with carefully since it results in image motion, referred to
as visual proprioception, that should not be incorporated in
the object pose updates. An easy way to account for this
is to synthesize this camera-motion-induced proprioceptive
optical flow and subtract it from the observed optical and AR
flow before constructing the normal equations. The normal
equations can then be fused across the cameras as if each
camera was static.

A similar approach can be used to account for the
nonlinearity of the problem. Since both the point-to-plane
and differential motion constraints are linearized versions
of the actual constraints, and since the correspondences are
obtained using projective data association, the optimization
needs to be iterated a number of times (set to three in
the remainder). At each iteration the scene is re-rendered
according to the updated pose. The component of the object
motion that was already explained by the previous iteration
pose update is then subtracted from the optical and AR flow
together with the component due to visual proprioception.

Representing the object pose in world coordinates at time t
as To

t , the object poses at times 1 and 2 are related by ∆To:

To
2 = ∆To To

1 . (18)

Using our current best estimate of ∆To we can synthesize
the optical flow that results from the camera and object
motion as follows. Since we have a detailed simulation of
the scene, our initial object pose estimate To

1 can be used to
generate the model depth at each pixel for a specific camera
viewpoint, see Fig. 2G. Note that this correctly accounts
for occlusions. From this depth we construct the visible 3D
model points in the camera coordinate frame at time 1, mc

1.
The object and camera motion now combine to arrive at the
transformed model points in camera coordinates at time 2:

mc
2 = T−12 (∆To)T1 m

c
1 , (19)

where Tt depicts the camera’s world frame pose at time t.
Reading this backwards, we first transform the model points
to the world frame at time 1, apply the object motion, and
transform the result back to the camera frame at time 2.
The synthetic optical flow is now simply obtained as the
difference of mc

2 and mc
1 projected in the camera image.

D. Combined Object Pose Detection and Tracking

To detect the 6DOF object pose from a single input
image, we match SIFT keypoints extracted from that image,
to a 3D model codebook constructed in an initial training
stage. A monocular perspective-n-point (pnp) pose estimator,
robustified through RANSAC, provides a pose estimate [27].

Since the detected poses tend to be less accurate than
the tracked poses, we do not merge them continuously,
but instead select the most reliable pose [20]. This allows
the system to recover from tracking failures and initialize
the pose of objects entering the scene. As in our previous
work, we use the proportion of valid AR flow in the visible
object region as reliability measure. This indicates how well
the appearance of the model rendered at the pose estimate
matches the actual image. The validity of the estimated
flow is determined using a forward/backward consistency
check. Note that the object region over which this proportion
is evaluated correctly ignores parts of the object that are
occluded by other tracked objects, see Fig. 2F.

Since we favor accuracy over speed in the detection stage,
we only focus on one object at a time when matching. To
simplify the pnp-RANSAC-based pose estimation, we also
consider one camera at a time. As a result, detection latency
increases linearly with the number of objects. Note that this
does not affect tracking itself, but only the recovery from
tracking failures and the initialization speed. For simplicity,
we randomly select the detector’s object and camera here,
although this selection can just as easily be biased towards
the least reliable, or currently undetected objects.

By focusing on one object at a time, deciding between the
tracker or detector hypothesis becomes straightforward. We
first ensure that the detector does not negatively affect the
reliability of any reliably tracked object in any camera. We
require the following set of conditions to hold:

∀(c, o) ∈ {(c̃, õ) : rtc̃,õ > τr} : rdc,o ≥ (rtc,o − ε) , (20)

with r
{t,d}
c,o the tracker (t) and detector (d) reliability for

object o in camera c, τr the reliability threshold (set to 0.15 in
the remainder), and ε a small allowed decrease in reliability
(0.1) to handle noise. The detected object pose is then
accepted if the highest detection reliability for that object,
acquired across all cameras, exceeds an object introduction
threshold τi (set to 0.30 in the remainder):

max
c

(rdc,o) > τi . (21)

Note that this procedure considers all interaction effects with
the other objects in all cameras. Its simplicity results from
introducing only one object at a time, and from the 3D
simulation that can generate reliability measures in each
viewpoint that correctly account for occlusions.

For efficiency reasons, AR flow is computed once based
on the tracker and once based on the detector hypothesis for
each camera, as opposed to the three times that was shown
in Fig. 1 for the sake of clarity. The AR flow-based winner
selection is performed on the newly arriving frames, rather
than at the final stage.

III. EXPERIMENTS

This section contains a series of experiments to evaluate
our methodology. We first examine how computation times
scale with image size, number of cameras used, and number
of objects in the scene. We then evaluate quantitatively

TABLE I
LOW-LEVEL VISION COMPUTATION TIME (IN MS)

image size

stage 640× 480 3× 640× 480 1920× 1080

image copy 0.2 0.6 1.4
Gabor (3×) 1.3 3.2 6.5
flow (3×) 2.8 7.4 15.4

total 4.3 11.2 23.3

TABLE II
UNCONSTRAINED POSE UPDATES COMPUTATION TIME (IN MS)

image size / # segments
3× 640× 480 1920× 1080

measurements 3 120 3 120

50,000 7.6 8.7 13.2 14.6
500,000 11.6 12.2 17.4 18.4

1,000,000 15.8 16.2 21.6 22.7

how the number of cameras used affects tracking accuracy.
Finally, we show real-world pose estimation results on a
cluttered scene and in an object stacking scenario.

A. Scalability

The proposed method scales both in terms of number
of cameras and number of objects. Imagery from multiple
cameras can be handled in parallel since the object poses
are first estimated in each camera separately, with redundant
degrees of freedom. The inter-camera constraints are then
enforced in a second stage. This late fusion from single- to
multi-camera enables us to leverage the parallel performance
provided by GPUs in the first data-intensive stage.

Computation times are mostly affected by the increased
number of pixels for which the low-level vision cues need
to be computed. Table I shows the required times (in ms)
for a number of configurations. Each new frame needs to be
copied to the GPU and participates three times in optical flow
computation (image optical flow, tracker AR flow, detector
AR flow) and thus also in Gabor filtering. Since the methods
used are highly local and we use optimized implementations,
we observe an approximately linear scaling in terms of pixels
processed.

Since initially the object poses are estimated with re-
dundant degrees of freedom, the number of segments, or
objects effectively considered by the tracker, is the product
of the actual number of objects and the number of cameras.
Table II contains the computation times for one object (3 seg-
ments) and 40 objects (120 segments) when considering three
cameras. Thanks to the late fusion approach, this increase
hardly affects computation times. In each case we performed
three internal iterations for robustness, and three external
iterations to handle the non-linearity. The computation times
required for composing the normal equations is affected by
the number of measurements used. These measurements are
the optical flow, AR flow, and depth measurements. We
observe a sublinear scaling in Table II when increasing
the number of measurements from 50,000 to 1,000,000. By

allowing for so many measurements, the method can reduce
the effects of imaging noise, modeling errors, and especially
important in the multi-camera setting, inaccurate calibration.

In Table II we also show the times required to process
a single full high-definition (1920 × 1080) image when
considering the same number of segments. Note that there
is an approximately fixed increase of around 6 ms. This is
due to the increased number of sorting operations required
for assigning measurements to segments. We use an efficient
radix sort implementation with 8 bit radix [28].

To arrive at the total time required for tracking, we need to
add an additional 5 ms mostly for rendering. The constrained
update takes only 0.5 ms out of this for 3 cameras and
40 objects. So the total time for a configuration with three
cameras, one million measurements, three internal and three
external iterations and considering 40 objects equals 11.2 +
16.2 + 5.0 = 32.4 ms. This allows us to perform tracking at
30 Hz in this highly demanding configuration.

The SIFT-based pose detection runs on a separate GPU
and provides pose estimates for the currently-selected camera
and object at around 20 Hz for 640 × 480 resolution using
SiftGPU [29]. It requires 20 ms for keypoint and descriptor
computation, 20 ms for brute-force matching, and 10 ms for
pnp pose estimation. Note that the detector does not slow
down tracking since the pose detections are only used when
available. Many improvements are possible in the detection
component, such as faster feature extraction [30] and model
size reduction [31], but we reserve these for future work.

B. Multiple Cameras Improve Tracking Accuracy

To measure the improvements that result from introducing
additional cameras, we use simple and very accurate planar
object models, see Fig. 3. We fix the three paper objects
to the table so that they cannot move with respect to each
other. Although they are essentially a single rigid object,
for the purpose of accuracy evaluation, we let the tracker
consider them as separate objects. As a consequence, relative
differences can be observed in the pose estimates over time.
This allows us to evaluate the tracker accuracy by measuring
the deviation from a single rigid object hypothesis. Our
error measure averages the frame-to-frame deviations from
rigidity:

enr =

√
1

f

∑
t

et , (22)

where f is the total number of frames, and:

et = min
T∗

t

1

n

∑
i

||vi
t+1 −T∗tv

i
t||2 , (23)

represents the deviation from rigidity when transforming vt,
the object vertices as hypothesized by the tracker’s pose
estimates at time t, to the object vertices hypothesized at the
next frame, vt+1, according to the rigid transform T∗t that
minimizes the least-squares error. Here n is the total number
of vertices in the model. The latter is found using a closed-
form solution to the absolute orientation problem [32]. The
results are summarized in Table III for two scenarios. The

TABLE III
AVERAGE DEVIATION FROM RIGIDITY enr (IN MM)

scenario
active camera(s) moving table occlusion

head + left + right 0.33 0.51
left + right 0.39 1.02
head 0.59 2.98
left 0.57 4.70
right 6.16 3.27

image sequences corresponding to these scenarios are part
of the supplemental material video. In the first scenario, the
table is moved by a human and only the robot occludes the
scene. Note how the error increases in Table III as cameras
are removed. The large error for the right arm camera is
due to a severe occlusion of one of the objects by the robot.
Figure 3 illustrates the accuracy difference between using
only the left camera (panels A–D) and using all cameras
(panels E–H). In the first case, a very precise alignment
is obtained in the left camera (A,B) without guaranteeing
consistency in the other views. Note especially how the
purple object has shifted with respect to the others from C
to D. Instead, when all cameras are used, the errors due
to miscalibration are distributed across the cameras, and
the large viewpoint differences resolve ambiguities and help
maintain the relative position of the objects (G,H).

In the second scenario a human occludes the objects. As
can be expected we obtain a more dramatic increase in error
when cameras are removed, see right column Table III. An
example frame of this sequence is shown in Fig. 4A–C. See
the supplemental material video for the complete sequence.

C. Detecting and Tracking Multiple Objects

We next show an example that illustrates how multiple
moveable cameras can simplify the interpretation of complex
cluttered scenes. The second column of Fig. 4D–F contains
pose estimation results in a scenario with seven different
objects. As the scene is highly cluttered and the objects are
partially occluded in each viewpoint, this configuration can
be resolved more easily by integrating the information from
all viewpoints. Our method gradually detects and introduces
the objects to the scene, while continuously refining their
pose using the AR flow, so as to arrive at a globally consistent
interpretation.

D. Object Stacking

In this final scenario we operate on a longer sequence
where the PR2 uses both arms to stack a Campbells can on
top of a cylindrical Pringles container. See Fig. 4G–L and
the supplemental material video for the complete sequence.
The execution has been entirely pre-programmed as we are
only concerned with visual pose estimation in this work.

The problem is challenging because of the size of the can,
the noise in the arm camera images, and the large distance
between the head camera and the scene. The system is not
accurately calibrated and this manifests itself in different
ways in different configurations. Compare for example the

Fig. 3. Two frames (X and Y) from a scenario where a table is moved by a human. The three targets are rigidly attached to the table, but tracked
independently. When tracking with the left camera only (A–D), high accuracy is obtained in that camera (A,B) but not in the right camera (C,D). The
results are not only due to miscalibration since the purple target moves with respect to the others in C and D. Instead, when all cameras are used (E–H),
the tracking is more robust and consistent in all cameras.

Fig. 4. The occlusion-scenario (A–C) demonstrates the robustness to unmodeled, external occlusions. The multiple objects-scenario (D–F) shows that the
interaction between multi-camera tracking and detection can arrive at precise pose estimates in cluttered scenes where each viewpoint provides only partial
visibility. The stacking-scenario (G–L) finally illustrates that our method maintains consistent object pose estimates in a complex stacking scenario even
though the calibration is inaccurate, see the left arm as projected in the right arm camera frame.

different misalignment of the left gripper model in Figs. 4I
and 4L.

Both arms need to collaborate to maintain full visibility
of the scene. The small can is largely occluded by the left
arm gripper but the right arm actively maintains a detailed
view of the grasped object throughout the manipulation. At
the same time the left arm camera maintains a view on the
Pringles target, see Fig. 4H. The view from the head camera
is frequently occluded by the manipulator and is too distant
from the scene to provide useful SIFT features for 6DOF
pose estimation. Collaboratively however, the three cameras
can maintain very detailed information during all stages of
the manipulation.

E. SimTrack Software Package

The proposed method is part of a larger ROS-based soft-
ware framework for real-time pose detection and tracking.
It can exploit monocular, stereo, and RGB-D cameras, and
can easily incorporate different robots through their URDF-
description. It consists of a tracker and detector component
that can exploit multiple GPUs. The SimTrack package is
released under a permissive BSD-license. We also provide
detailed usage instructions, particularly in terms of how to
obtain textured object meshes.

IV. CONCLUSION

We have proposed a robust object pose detection and
tracking method that scales to multiple cameras and objects.
We have demonstrated real-time performance in a complex
configuration with three cameras and up to forty objects.
We have shown that tracking accuracy improves when more
cameras are exploited. In an extensive real-world stacking
scenario, recorded using an imprecisely calibrated system,
our method robustly detects and tracks the pose of all
elements of interest. Since the main computational load
in our approach involves data local to each camera, it
allows for new robotic configurations with a large number
of smart camera attachments. This opens up interesting
research avenues concerned with optimal scene exploration
for increased tracking accuracy, planning considering multi-
camera visibility, on-line calibration, etc. The public release
of our method allows for its immediate exploitation by
the multiple PR2s and other robots used by the research
community.

REFERENCES

[1] D. Kragic and H. I. Christensen, “Survey on visual servoing for ma-
nipulation,” Computational Vision and Active Perception Laboratory,
Tech. Rep., 2002.

[2] O. Kermorgant and F. Chaumette, “Multi-sensor data fusion in sensor-
based control: Application to multi-camera visual servoing,” in ICRA,
May 2011, pp. 4518–4523.

[3] F. Martin and R. Horaud, “Multiple-camera tracking of rigid objects,”
Int. J. Robot. Res., vol. 21, no. 2, pp. 97–113, 2002.

[4] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 932–946, 2002.

[5] I. Oikonomidis, M. Lourakis, and A. Argyros, “Evolutionary quasi-
random search for hand articulations tracking,” in CVPR, June 2014,
pp. 3422–3429.

[6] K. Pauwels, V. Ivan, E. Ros, and S. Vijayakumar, “Real-time object
pose recognition and tracking with an imprecisely calibrated moving
RGB-D camera,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sept 2014, pp. 2733–2740.

[7] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework:
Object recognition and pose estimation for manipulation,” Int. J.
Robot. Res., vol. 30, no. 10, pp. 1284–1306, Apr. 2011.

[8] Z. Xie, A. Singh, J. Uang, K. Narayan, and P. Abbeel, “Multimodal
blending for high-accuracy instance recognition,” in IROS, Nov 2013,
pp. 2214–2221.

[9] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. Di Stefano,
and M. Vincze, “Multimodal cue integration through hypotheses
verification for RGB-D object recognition and 6DOF pose estimation,”
in ICRA, 2013, pp. 2104–2111.

[10] A. Aldoma, T. Faulhammer, and M. Vincze, “Automation of ‘ground
truth’ annotation for multi-view RGB-D object instance recognition
datasets,” in IROS, 2014, pp. 5016–5023.

[11] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a multi-arm
multi-sensor robot: A bundle adjustment approach,” in Experimental
Robotics, O. Khatib, V. Kumar, and G. Sukhatme, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, vol. 79, pp. 211–225.

[12] N. T. Dantam, H. B. Amor, H. I. Christensen, and M. Stilman, “Online
multi-camera registration for bimanual workspace trajectories,” in
Humanoids, 2014.

[13] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration
for a video-based augmented reality conferencing system,” in 2nd Int.
Workshop on Augmented Reality (IWAR 99), Oct. 1999.

[14] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze,
“BLORT - The blocks world robotic vision toolbox,” in ICRA, 2010.

[15] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robot. Autom. Mag., vol. 12, no. 4, pp. 40–52, Dec. 2005.

[16] Autodesk, “123D Catch,” http://www.123dapp.com/catch/.
[17] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.
[18] “OGRE – Open Source 3D Graphics Engine,” http://www.ogre3d.org.
[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” ICRA Workshop on Open Source Software, 2009.

[20] K. Pauwels, L. Rubio, J. Diaz Alonso, and E. Ros, “Real-time model-
based rigid object pose estimation and tracking combining dense and
sparse visual cues,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR),
Portland, 2013, pp. 2347–2354.

[21] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. Van Hulle, “A
comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features,” IEEE Transactions on Computers,
vol. 61, no. 7, pp. 999–1012, July 2012.

[22] K. Pauwels, L. Rubio, and E. Ros, “Real-time model-based articulated
object pose detection and tracking with variable rigidity constraints,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Columbus, Ohio, June 2014,
pp. 3994–4001.

[23] C. Yang and G. Medioni, “Object modelling by registration of multiple
range images,” Image Vision Comput., vol. 10, pp. 145–155, 1992.

[24] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a
moving retinal image,” P. Roy. Soc. B-Biol. Sci., pp. 385–397, 1980.

[25] R. M. Murray and S. S. Sastry, A mathematical introduction to robotic
manipulation. CRC press, 1994.

[26] F. Mosteller and J. Tukey, Data analysis and regression: A second
course in statistics. Mass.: Addison-Wesley Reading, 1977.

[27] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid
objects,” Found. Trends. Comp. Graphics and Vision., vol. 1, pp. 1–89,
2005.

[28] NVIDIA, “CUB – CUDA unbound,” http://nvlabs.github.io/cub.
[29] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature

transform (SIFT),” http://cs.unc.edu/∼ccwu/siftgpu, 2007.
[30] M. Björkman, N. Bergström, and D. Kragic, “Detecting, segmenting

and tracking unknown objects using multi-label MRF inference,”
Comput. Vis. Image Und., vol. 118, pp. 111–127, Jan. 2014.

[31] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” Int. J. Comput. Vision,
vol. 77, no. 1-3, pp. 259–289, Nov. 2007.

[32] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Am. A, vol. 4, no. 4, pp. 629–642, 1987.

