
Pauwels, K.; Rubio, L.; Ros, E., "Real-time Pose Detection and Tracking of Hundreds of
Objects," Circuits and Systems for Video Technology, IEEE Transactions on , vol.PP, no.99,
pp.1,1, doi: 10.1109/TCSVT.2015.2430652
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7102713&isnumber=4358651

(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7102713&isnumber=4358651

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 1

Real-time Pose Detection and

Tracking of Hundreds of Objects
Karl Pauwels, Leonardo Rubio, and Eduardo Ros

Abstract—We propose a novel model-based method for track-
ing the six-degrees-of-freedom (6DOF) pose of a very large
number of rigid objects in real-time. By combining dense motion
and depth cues with sparse keypoint correspondences, and by
feeding back information from the modeled scene to the cue
extraction process, the method is both highly accurate and robust
to noise and occlusions. A tight integration of the graphical and
computational capability of graphics processing units (GPUs)
allows the method to simultaneously track hundreds of objects
in real-time. We achieve pose updates at framerates around
40 Hz when using 500,000 data samples to track 150 objects
using images of resolution 640×480. We introduce a synthetic
benchmark dataset with varying objects, background motion,
noise and occlusions that enables the evaluation of stereo-vision-
based pose estimators in complex scenarios. Using this dataset
and a novel evaluation methodology, we show that the proposed
method greatly outperforms state-of-the-art methods. Finally,
we demonstrate excellent performance on challenging real-world
sequences involving multiple objects being manipulated.

Index Terms—model-based object pose estimation, optical flow,
stereo, real time, graphics processing unit (GPU), benchmarking.

I. INTRODUCTION

ESTIMATING and tracking the 6DOF (three translation

and three rotation) pose of multiple rigid objects is

critical for robotic applications involving object grasping and

manipulation, and also for inspection tasks, activity interpreta-

tion, or even path planning. In many situations, models of the

objects of interest can be obtained quickly and with relative

ease, either off-line [1], or on-line in an exploratory stage [2],

[3].

A. Related Work

Since real-time pose detection and tracking is such an

important ability of robotic systems, a wide variety of methods

have been proposed in the past. We only provide a brief

overview of the major classes of methods here. Many more

examples exist for each class. An important distinction exists

between pose detection and pose tracking methods. Unlike

pose tracking methods, pose detection methods do not ex-

ploit temporal information. Our work mostly focuses on pose

tracking although we rely on pose detection to (re-)initialize

tracking and thus also consider the interaction between both.

K. Pauwels is with the Computer Vision and Active Perception
lab, Royal Institute of Technology (KTH), Stockholm, Sweden, e-mail:
kpauwels@kth.se.

L. Rubio is with Fuel 3D Technologies Limited, Oxford, UK, e-mail:
leo@fuel-3d.com.

E. Ros is with the Computer Architecture and Technology Department,
University of Granada, Spain, e-mail: eros@ugr.es.

Therefore we also include a brief overview of these methods

here.

Pose detection approaches can recover the pose from a

single image, without requiring an initial estimate. Many such

methods rely on sparse keypoints and descriptors to match 2D

image features to 3D model points [4], [5]. It has recently

been shown how these methods can scale to a very large

number of objects [6], [7]. Template methods on the other hand

match images to a set of stored templates covering different

views of an object [8]. These templates can contain various

features and recently also RGB-D-input has been exploited

[9]. When complete 3D object models are available, the

estimates provided by such methods can also be subsequently

refined using standard depth-based iterative closest point (ICP)

procedures [10], [11]. Template-based methods are related to

learning-based methods for multi-view object class detection,

but the latter typically provide only coarse viewpoint estimates

[12].

Pose tracking methods refine a pose estimate, usually

obtained at the previous time step, based on the measurements

obtained at the current time. The most efficient tracking meth-

ods to date match expected to observed edges by projecting

a 3D wireframe model in the image [13]. Many extensions

have been proposed that exploit also texture information [14],

[15], optical flow [16] or particle filtering [5], [17], [18] in

order to reduce sensitivity to background clutter and noise.

Robustness has also been improved by considering multiple

hypotheses [19]. A different class of approaches relies on

level-set methods to maximize the discrimination between

statistical foreground and background appearance models [20].

These methods can include additional cues such as optical flow

and sparse keypoints, but at a large computational cost [21].

Recently, also methods that combine both edge- and region-

based information have been proposed [22].

Some of these methods also combine tracking with de-

tection to enable automatic initialization or recovery in case

of severe occlusions [4], [18], [23], but the multiple object

case is not considered explicitly as this requires accounting

for inter-object occlusion and having scalable computational

requirements. So far, these aspects have been mostly studied

in the context of two-dimensional tracking [24] rather than full

6-DOF pose estimation.

Most of the above-mentioned tracking approaches can ex-

ploit multi-view information or blob-based stereo triangulation

[25], but dense depth information is rarely used. Particle

filtering has been used recently for RGB-D object tracking

[26] but the dense depth information is only used there to

evaluate the particle hypotheses, rather than to compute a

pose update, as done in ICP-based methods, such as the one

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 2

proposed here. An ICP approach [10] can be used provided

the object has sufficiently salient shape features. This has been

applied with great success in related problems such as on-

line scene modeling [2] where the whole scene is considered

as a rigid object. Recently, due to the prevalence of cheap

depth sensors, depth information is also being applied in other

related problems, such as articulated body pose estimation [27]

and visual servoing [28].

We show here that incorporating some of these advances in

real-time object tracking, and extending them with additional

cues, yields great improvements.

B. Novelty

Unlike most model-based methods that exploit only salient

parts of the model (keypoints, silhouettes, edges, shape fea-

tures), we instead aim to retain all of the model’s shape and

appearance information, and match it to the observed dense

visual features. In this way, the useful feature-set is constrained

by the dense algorithms at perception time, rather than at

model creation time.

The main contributions can be summarized as follows.

Firstly, we introduce a model-based 6DOF pose detection

and tracking method that combines dense motion and stereo

disparity measurements with sparse keypoint features. It ex-

ploits feedback from the modeled scene to the cue extraction

level and provides an effective measure of reliability. Although

dense motion and stereo have been combined before in model-

free 6DOF camera pose estimation [29], we show here how

the model information can be used to keep the motion and

stereo measurements separate while still jointly minimizing

their cost in the error function. For the stereo component we

use an ICP approach rather than the ‘disparity flow’ used by

[29]. We show that by iteratively re-rendering the scene, we

can move from the differential pose updates typically obtained

from linearized edge- or motion-based energy functions, to

the full discrete pose update. Secondly, the method has been

designed specifically for high-performance operation (± 40 Hz

with 150 objects). By allowing a tracking system to operate

at higher framerates, the motion flows between successive

frames become smaller which simplifies tracking and allows

for faster object motion [30]. To achieve this, every aspect

of the algorithms and the system has been developed with

GPU acceleration in mind. Both the graphics and computation

pipelines of a modern GPU are extensively used and tightly

integrated in both the low-level cue extraction and pose

tracking stages. Finally, an extensive benchmark dataset and

evaluation methodology have been developed and used to show

increased performance (in accuracy, robustness, and speed) as

compared to state-of-the-art methods.

Parts of this work have been presented earlier [31]. We

introduce here an extension to the multi-object case, together

with more method and implementation details, a more detailed

evaluation, and additional real-world results.

II. PROPOSED METHOD

A concise overview of the method is shown in Fig. 1.

Different visual cues are extracted from a stereo video stream

����� ���� 	
����

�����

�����������

������

��������

����� �!��

��"#�� �!��

����

#���

��$�%��

��������

Fig. 1. Method overview illustrating the different visual cues (AR =
augmented reality, see II-B2) and model components. The cues are combined
to estimate the objects poses and scene information is fed back to facilitate
the cue extraction.

and combined with model information (known a priori) to

estimate the 6DOF pose of multiple objects. In turn, scene

information (related to the joint appearance and shape of the

tracked models) is fed back to facilitate the cue extraction

itself.

A. Scene Representation

The surface geometry and appearance of the objects to

track are modeled by a triangle mesh and color texture

respectively. Modern graphics hardware allows for these mod-

els to be highly complex in shape and appearance. For a

given set of model poses, the color (Fig. 2B), distance to

the camera (Fig. 2E), surface normal (Fig. 2F), and object

identity (Fig. 2D) can be obtained efficiently at each pixel

through OpenGL rendering. As a result also self-occlusions

and occlusions between different modeled objects are handled

automatically through OpenGL’s depth buffer. In a training

stage, SIFT (Scale-Invariant Feature Transform) features [32]

are extracted from keyframes of rotated versions of each model

(30◦ separation), and mapped onto the model’s surface.

B. Visual cues

The dense motion and stereo cues are obtained using

coarse-to-fine GPU-accelerated phase-based algorithms [33],

[34] (modified as discussed next), and the SIFT features are

extracted and matched using a GPU library [35].

1) Model-based dense stereo: Coarse-to-fine stereo algo-

rithms, although highly efficient, support only a limited dis-

parity range and have difficulties detecting fine structures

[36]. To overcome these problems we feed the object pose

estimates obtained in the previous frame back as a prior in

the stereo algorithm. Figure 3A,B show an example real-world

stereo image pair of a box being manipulated. Using the box’s

previous frame pose estimate, stereo priors are generated for

the current frame pair by converting OpenGL’s Z-buffer to

disparities for both the left and right cameras. These disparity

values are downsampled (Fig. 3C,D) and introduced at the

lowest scale used by the stereo algorithm. Stereo disparity is

then computed twice, once with respect to the left and once

with respect to the right image (essentially by swapping left

and right images), each time processing the entire pyramid.

This results in two separate disparity maps, one from the

left to the right image, δRL , and one from the right to the

left image, δLR. A left/right consistency check is then used to

remove unreliable estimates. Concretely, δRL is used to find the

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 3

����������� ��	
���
������	����
����

��	
���
��������� ��	
���
�
�����

��������� ��	
���
�	����������������

Fig. 2. (A) Original input image, (B) color image obtained by rendering
the textured models according to the current pose estimates, (C) AR image
obtained by merging A and B (see II-B2), (D) segment (object identity) labels
accounting for occlusions, (E) depth-buffer, and (F) horizontal component of
the normals. Note the model errors in the lid of the Nutricia object.

corresponding pixel in δLR and the following error is evaluated

in each pixel:

eδ(x) = |δRL (x) + δLR
(

x+ δRL (x)
)

| . (1)

Disparity estimates with an error exceeding 0.5 pixel are then

considered unreliable (see [36] for further details). The reliable

estimates for the current frame obtained with and without

the priors are shown in panels E and F respectively. For the

prior-less algorithm, we used the maximal amount of scales

(six) that allow us to fit the filter kernels (11×11) at the

lowest resolution. Due to the large range of disparities in

this particular scene, without the prior, the focus is on the

background rather than on the object of interest (Fig. 3F).

Note that the prior corresponds to the previous frame pose

estimate. With prior, the stereo algorithm thus only has to

correct the disparity that results from the pose difference

between the current and previous frame. This is much smaller

than the absolute disparity and is instead of the order of

the correspondences obtained in an optical flow scenario. In

Fig. 3E we show that four scales are sufficient to obtain

detailed estimates. In certain scenarios (e.g. complete loss

of tracking) it is possible that a completely wrong prior is

generated. In this case the pose selection mechanism (see

II-C2) will signal this and either switch to the sparse detector’s

pose estimate, or mark both the tracker and detector estimates

unreliable.

2) Dense motion cues: The optical flow algorithm inte-

grates the temporal phase gradient across different orientations

and also uses a coarse-to-fine scheme to increase the dynamic

��������	��
�	������	��

��������
�
��
�

�
�	������
�
��
�

�

���
�
�������
�

� ���
�
�����
����
�

�

����

����

���

���

����

���� ��

���

Fig. 3. (A) Left and (B) right input images and low-resolution (C) left and
(D) right stereo priors generated using the previous frame pose estimate of
the manipulated box. (E) Stereo obtained using four scales and initializing
with the prior, and (F) stereo obtained using six scales and without using the
prior.

range [37]. Unlike [37], we estimate the temporal phase

gradient using two instead of five frames, more specifically

the frames It and It+1, at times t and t + 1. This results in

noisier estimates, but reduces the latency. This trade-off can be

made depending on the expected dynamics of the considered

scenario. In a similar fashion as in the stereo algorithm,

a simple consistency check is used to discard unreliable

estimates (in this case a forward/backward as opposed to

left/right consistency check in the stereo case). A prior is not

required here since displacements in the motion scenario are

much smaller than in the stereo scenario. The image resolution

considered here allows for the use of six scales which enables

a maximal optical flow velocity of around 64 pixels/frame. We

refer to [33], [36] for more specific details of the algorithms.

Figure 4C contains the (subsampled and scaled) optical flow

vectors from Fig. 4A to the next image in a complex real-

world scenario with both object and camera motion. Besides

the optical flow, we also extract a second type of motion which

we refer to as augmented reality (AR) flow that incorporates

scene-feedback. The models’ textures are rendered at their

current pose estimates and overlaid on It, resulting in an

‘augmented image’ Ît. An example is shown in Fig. 4B using

a single object (see Fig. 2C for a multi-object example). The

motion is then computed from Ît to the next real image (It+1),

and shown in Fig. 4D for the example presented here. Because

of the erroneous pose estimate (deliberately large in this case

to better illustrate the concept) this motion is quite different

from the optical flow. It allows the tracker to recover from

such errors by effectively countering the drift that results from

tracking based on optical flow alone.

Note that the appearance (especially the brightness) of the

model texture will always be somewhat different from the real

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 4

left imageA left AR imageB

optical flowC AR flowD

Fig. 4. (A) Left image and (B) left image with rendered model (at incorrect
pose) superimposed. (C) Real optical flow from real image in A to the next
real image. (D) AR flow from AR image in B to the next real image. Both
flow fields are subsampled (15×) and scaled (5×).

scene. It is therefore critical that the optical flow algorithm

is largely invariant to this. Since the phase-based algorithm

used here relies on a phase-constancy rather than a brightness-

constancy assumption, it is inherently invariant to intensity

differences. Consider the more extreme (but not unrealistic)

example in Fig. 5. Here, the images were recorded with short

exposure, resulting in large intensity differences between the

real scene and the model texture. We compare the optical

flow of our method to a standard pyramidal Lucas & Kanade

algorithm (L&K) [38]. Note that the optical flow (from 5A

to 5B) is similar for both methods (although L&K is more

noisy). L&K however fails completely on the AR flow (from

5C to 5B) where the large intensity differences result in large

flow vectors (5E). The phase-based algorithm is completely

insensitive to this and correctly perceives the rotation of the

AR image (5G). The same default parameters were used in

(D,E) and (F,G).

C. Pose detection and Tracking

The proposed tracking method incorporates the differential

rigid motion constraint into a fast variant of the ICP algorithm

[10] to allow all the dense cues to simultaneously and robustly

minimize the pose errors. A selection procedure (II-C2) is

used to re-initialize the tracker with estimates obtained from

a sparse keypoint-based pose detection approach, if required.

1) Dense Pose Tracking: In the following we will consider

the single object case only. Multiple objects can be treated

independently and in parallel since we are not considering

interactions between the objects. Note that occlusions are

handled automatically at the rendering stage. In Section III

we will discuss in more detail how this parallel optimization

is performed.

Our aim is to recover the rigid rotation and translation that

best explains the dense visual cues and transforms each model

point m = [mx, my, mz]
T at time t into point m

′ at time

t+ 1:

m
′ = Rm+ t , (2)

�����������	� �����������
� ���������	�

��������������
���������� �

����������������������� ������������������� �

Fig. 5. Importance of intensity invariance for AR flow computation. (A) and
(B) are consecutive images obtained with short exposure. The AR image (C)
is composed by superimposing the model (with much brighter texture) at an
incorrect pose on image (A). Optical flow from A to B computed with (D)
pyramidal Lucas & Kanade and (F) our phase-based algorithm. AR flow from
C to B with (E) pyramidal Lucas & Kanade and (G) phase-based. All flow
fields are subsampled (20×) but unscaled.

with R the rotation matrix and t = [tx, ty, tz]
T the translation

vector. The rotation matrix can be simplified using a small

angle approximation:

m
′ ≈ (1+ [ω]×)m+ t , (3)

with ω = [ωx, ωy, ωz]
T representing the rotation axis and

angle. Each stereo disparity measurement, d′, at time t + 1
can be used to reconstruct an approximation, s′, to m

′. Since

we are using a rectified camera configuration, this is quite

straightforward:

s
′ =





s′x
s′y
s′z



 =





x s′z/f
y s′z/f
−f b/d′



 , (4)

with x = [x, y]T the pixel coordinates (with nodal point as

origin), f the focal length, and b the baseline of the stereo

rig. The focal length and baseline are assumed known and are

approximately 500 pixels and 70 mm respectively in the stereo

system used in the remainder. To use this reconstruction in

(2), the model point m corresponding to s
′ needs to be found.

We deliberately avoid using the motion cues to facilitate this

correspondence search (as done in many ICP extensions) since

this requires both valid stereo and valid motion measurements

at the same pixel. Instead we use the efficient projective data

association algorithm [39] that corresponds stereo measure-

ments to model points that project to the same pixel. These

correspondences can be obtained instantly, but they are less

accurate. Therefore, a point-to-plane as opposed to a point-to-

point distance needs to be minimized [40], which is obtained

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 5

by projecting the error on n = [nx, ny, nz]
T, the model

normal vector in m:

e =
[

(Rm+ t− s
′) · n

]2

. (5)

Note that the normal, obtained by rendering the scene through

OpenGL, is already in the camera frame (Fig. 2F). This error

expresses the distance from the reconstructed points to the

plane tangent to the model. By linearizing this measure as

in (3) and summing over all correspondences {mi, s
′
i}, we

arrive at a strictly shape-based error measure that is linear in

the parameters of interest t and ω:

eS(t,ω) =
∑

i

(

[

(1+ [ω]×)mi + t− s
′
i

]

· ni

)2

. (6)

We next discuss the incorporation of dense motion estimates

into the pose tracking procedure. By rearranging (3), we obtain

the following:

m
′ −m ≈ t+ ω ×m . (7)

Note that this looks very similar to the differential motion

equation from classical kinematics that expresses the 3D

motion of a point, ṁ, in terms of its 3D translational and

rotational velocity:

ṁ = t+ ω ×m . (8)

We deliberately retain the (t,ω) notation since the displace-

ments in (3) are expressed in the same time unit. This can now

be used with the optical flow to provide additional constraints

on the rigid motion. Unlike in the stereo case (4), ṁ cannot

be reconstructed from the optical flow and instead (8) needs to

be enforced in the image domain. After projecting the model

shape:

x = f

[

mx/mz

my/mz

]

, (9)

the expected pixel motion ẋ = [ẋ, ẏ]T becomes:

ẋ =
δx

δt
=

f

m2
z

[

ṁxmz −mxṁz

ṁymz −myṁz

]

. (10)

Combining (10) with (8) results in the familiar equations [41]:

ẋ =
(f tx − x tz)

mz

−
x y

f
ωx + (f +

x2

f
)ωy − y ωz , (11)

ẏ =
(f ty − y tz)

mz

− (f +
y2

f
)ωx +

x y

f
ωy + xωz , (12)

which are linear in t and ω provided the depth of the point is

known. We obtain this depth mz by rendering the model at the

current pose estimate rather than using the stereo measurement

(9). This has the advantage of keeping the motion and stereo

measurements strictly separate. Since we have two sources of

pixel motion, we have two error functions:

eO(t,ω) =
∑

i

‖ẋi − oi‖
2 , (13)

eA(t,ω) =
∑

i

‖ẋi − ai‖
2 , (14)

with o = [ox, oy]
T and a = [ax, ay]

T the observed optical

and AR flow respectively.

Both the linearized point-to-plane distance in the stereo

case and the differential motion constraint in the optical and

AR flow case now provide linear constraints on the same

rigid motion representation (t,ω) and can thus be minimized

jointly. Note that the optical flow errors are expressed in

pixels, whereas the shape-based error is measured in Euclidian

space. This is problematic since the latter does not correctly

weigh each sample according to the expected noise. The noise

distributions of the disparity and optical flow measurements

can be expected to be similar in image space, since both

are obtained using similar phase-based correspondence finding

algorithms. We can resolve the difference in units by using a

weighted version of (6) instead:

eSW (t,ω) =
∑

i

(

wi

[

(1+[ω]×)mi+ t− s
′
i

]

·ni

)2

, (15)

where we use the derivative of the depth-to-disparity trans-

form, d(z) = −fb/z, see (4), evaluated at the sample’s model

depth mzi :

wi =
fb

m2
zi

. (16)

This weight effectively transforms a change in depth, as

measured in (6), into a change in disparity. For stability, we

use the model depth at the current pose rather than the depth

estimated from disparity. Now that each component of the

error is expressed in the image domain, we simply combine

them to arrive at the following error function:

E(t,ω) = eSW (t,ω) + eO(t,ω) + eA(t,ω) . (17)

We let each cue contribute equally in this error function. The

optimal balance between optical and AR flow depends on

model quality and is therefore hard to decide in advance. Since

the system as a whole is quite robust due to the multiple cues,

this issue is not critical. More important though is the relative

weighting of stereo and motion. For this purpose we evaluated

different weight settings on the entire benchmarking dataset

of Section IV and observed only marginal effects in a range

around equal weight. Setting weights to zero does have large

effects though, as will be shown in Section V-A.

To increase robustness, an M-estimation scheme is used

to gradually reduce the influence of outliers and ultimately

remove them from the estimation [42]. In the case of large

rotations the linearized constraints used in (17) are only

crude approximations, and many of the shape correspondences

obtained through projective data association will be wrong.

Therefore, the minimization of (17) needs to be iterated a

number of times, at each iteration updating the pose, the shape

correspondences, and the unexplained part of the optical and

AR flow measurements.

At iteration k, an incremental pose update is obtained by

minimizing E(∆t
k,∆ω

k), and accumulated into the pose

estimate at the previous iteration k − 1:

Rk = ∆Rk Rk−1 , (18)

t
k = ∆Rk

t
k−1 +∆t

k , (19)

where ∆Rk = e[∆ω
k]× . The model is updated as:

m
k = Rk

m+ t
k , (20)

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 6

and used to obtain the new (projective) shape correspondences

and the part of the optical and AR flow explained thus far,

∆x
k = [∆xk,∆yk]T:

∆xk = f(mk
x/m

k
z −mx/mz) , (21)

∆yk = f(mk
y/m

k
z −my/mz) . (22)

This explained flow is subtracted from the observed optical

and AR flow:

o
k = o−∆x

k , (23)

a
k = a−∆x

k . (24)

The next iteration incremental pose updates are then obtained

by minimizing E(∆t
k+1,∆ω

k+1), which operates on o
k, ak,

m
k, and s

′. This cycle is repeated a fixed number of times

(we use three internal iterations for the M-estimation, and three

external iterations). Note that even though the updates in each

iteration are estimated from linearized equations, the correct

accumulated discrete updates are used in between iterations

(20–22).

2) Combined Sparse and Dense Pose Estimation: A

RANSAC-based monocular perspective-n-point pose estimator

is used to robustly extract the 6DOF object pose on the basis

of correspondences between image (2D) and model codebook

(3D) SIFT keypoint descriptors [38], [43]. Exhaustive match-

ing is used and therefore, unlike the dense tracking component

of the proposed method, this sparse estimator provides a pose

estimate that does not depend on the previous frame’s estimate.

Due to the nonlinear and multimodal nature of the sparse

and dense components, directly merging them using for in-

stance a Kalman filtering framework is not suitable here.

Instead we select either the sparse or dense estimate based

on the effectiveness of its feedback on cue extraction, as

measured by the proportion of valid AR flow vectors in the

projected (visible, unoccluded) object region. An example

of these regions is shown in Fig. 2D. The pose estimate

that leads to the largest proportion valid AR flow wins.

As mentioned above, a flow vector is considered valid if it

passes a simple forward/backward consistency check (II-B2).

Note that the accuracy of AR flow is affected by model

inaccuracies, but since we are comparing (dense-pose-based)

AR flow to (sparse-pose-based) AR flow, both will be equally

affected. A very important characteristic of this measure is

that, unlike optical-flow-based or stereo-based measures, AR

flow is affected by occlusions (unless the occlusion is due to

another tracked object). When the occluder becomes dominant,

the dense tracker will start using the occluder’s motion and

stereo measurements for the pose update, rather than those

of the object-of-interest. At this point the sparse pose update

will be selected since its more accurate pose estimate will

likely result in a larger AR flow density. This will remain

active until the occlusion becomes too large. Then, the small

proportion of valid AR flow will signal the problem and the

object will be considered lost (occluded). It then needs to be

re-detected for tracking to resume. We show in Section V that

this simple measure is adequate for selecting and determining

the reliability of the pose estimate.

��������	�
�
�

������
����	�
�������
�

������
����	�
��������
�

������
����

�
����
�����

�
����
������

�������
���

�����������
�	

����������
�	

�����������
�	

����������
�	

�������������
����	����������
����

�������
���

�����
������	

�
����
������

����������
�

�����
�����
������

� �

Fig. 6. Combined sparse pose detection and dense pose tracking. Dashed
boxes refer to images and solid boxes to extracted cues. (A) Processing se-
quence for obtaining the three different motion cues. (B) Sequence performed
to obtain the dense cues and select the winner pose. Note that model-based
stereo only needs to be computed once since it is not used in the evaluation.

Figure 6A shows how the previous frame dense and sparse

poses are used to generate two AR images. From these, the

dense and sparse AR flow are extracted and the winner pose is

selected based on the proportion of valid AR flow vectors in

the object region (Fig. 6B). This pose is then used to update

the stereo priors and obtain the model-based stereo at time t.
Finally, all cues are combined in the tracker resulting in the

dense pose at time t.
3) Multiple Object Pose Estimation: The above-mentioned

approach can be extended to the multi-object case as follows.

Since the sparse estimator does not scale to multiple objects

like the tracker, we let it operate on a single (but possibly

different) object at each time instance. This object is selected

probabilistically according to the current reliability of each

object’s pose. Concretely, each object o has the following

probability of being selected for a sparse update:

p(o) =
1− r(o)

∑

i

(

1− r(i)
) , (25)

with r(o) the reliability (i.e. the proportion valid AR flow).

This functions as an attention mechanism, focusing the lim-

ited resources on the least reliable estimates. With multiple

objects present, it is critical to consider the reliability of

the object poses at rendering time. Rendering an unreliable

object at an incorrect pose (for example close to the camera)

can dramatically disturb the processing of the other objects

due to the occlusion handling in the Z-buffering. Therefore,

unreliable objects are not considered in the tracking stage.

They instead receive a higher probability of becoming the

sparse pose estimator’s current target.

The sparse/dense selection is performed in a similar way as

in the single object scenario (considering the reliability of the

updated object) but now also ensuring that the sparse update

does not negatively affect the reliability of any other currently

tracked object.

III. GPU IMPLEMENTATION

An overview of all the processing steps in the multi-object

case is provided in Algorithm 1. The entire system has been

developed using OpenGL and NVIDIA’s CUDA framework

[44].

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 7

Algorithm 1: GPU multiple pose tracking update

input : initial poses; low-level visual cues

(Section III-A)

output: pose updates

for ICP iterations do

begin pre-process (Section III-B)
mark valid samples with OpenGL segment labels

(Fig. 2D)

radix sort indices of valid samples based on

segment labels

if #samples > max samples then
subsample valid indices

gather residual optical and AR flow, disparity,

and OpenGL depth and normals
end

begin ordinary least squares (Section III-C)
compose normal equations optical and AR flow

compose normal equations disparity

solve systems (on CPU)
end

for reweighting iterations do
begin robust least squares iteration

(Section III-D)
compute abs. residuals optical and AR flow

compute abs. residuals disparity

compute approx. median abs. residuals

compose weighted normal equations optical

and AR flow

compose weighted normal equations disparity

solve systems (on CPU)
end

compute residual optical and AR flow (23,24)

update poses

render scene at updated poses

A. Low-level Vision

As shown in Fig. 6 the AR flow is computed twice, based

on the previous frame’s sparse and dense pose estimates.

Consequently, four Gabor pyramids need to be computed (left

image, right image, sparse left AR image, dense left AR

image). A number of rendering steps are also required to create

the stereo priors and AR images. A detailed discussion of the

GPU implementation of the low-level component of the system

(but without the feedback components introduced here) can be

found in [33].

B. Pre-processing

The pre-processing component aims to re-organize the

pixel-based low-level vision and model-based cues to enable

efficient processing in subsequent stages. Concretely this in-

volves assigning all valid measurements (residual optical and

AR flow, disparity, Z-buffer and normals) to their respective

segments, in accordance with the current pose estimates. A

unique index or label is associated with each object and by

rendering the scene according to the current pose estimates, the

corresponding segment label (or a label signaling no object)

is assigned to each pixel (Fig. 2D). All OpenGL data written

by the shaders is directly accessible through CUDA. The most

expensive operation at this stage is sorting the label indices.

Since every image pixel has a label, a general sorting operation

is infeasible. However, the number of labels is limited and

an efficient radix sort can be used instead [45]. After sorting,

the indices are subsampled if the total available measurements

exceeds a threshold (max samples). All data is then gathered

and a compacted stream results.

C. Ordinary Least Squares

Least squares estimation involves composing and solving

the normal equations corresponding to the linear least squares

system of (17). We can rewrite this as follows to expose the

linearity:

E(α) = (FSWα− dSW)T(FSWα− dSW) +

(FMα− dM)T(FMα− dM) , (26)

where the rigid motion parameters are stacked into a screw

vector α =

(

ω

t

)

for convenience, and FSW , dSW and

FM ,dM are obtained by gathering the sensor data according to

(15) and (11,12) respectively (for compactness, we no longer

distinguish between optical and AR flow at this point). This

can be solved in the least-squares sense using the normal

equations:

(FT
SWFSW + F

T
MFM)α = (FT

SWdSW + F
T
MdM) . (27)

The construction of the matrices in the lefthand-side of (27)

involves a substantial increase of data at each sample. A

sample here refers to a valid optical or AR flow vector, or

a valid stereo disparity measurement. For example, for the

motion case (11,12) each sample contains the motion vector

(2D), the depth-buffer (1D), and the (linearized) pixel location

(1D), resulting in a total of 4 input values. The flow normal

equations associated with this sample however contain 23

unique values (due to symmetry etc.). For the stereo case

(15) the expansion goes from 6 input values (1 disparity,

1 depth, 3 normals, 1 pixel location) to 27 unique values in the

normal equations. To limit the data stream, this composition

is combined with an initial compaction operation. This is then

followed by an additional GPU kernel (a CUDA processing

step) to completely reduce the normal equations. These normal

equations are then solved on the CPU.

D. Reweighted Least Squares

Tukey’s M-estimation scheme [42] (an iteratively

reweighted least squares approach) is used to robustly

solve the normal equations in the presence of outliers. At

each iteration the least squares problem from the previous

section is solved, but now weighting each constraint inversely

proportional to the error obtained with the current estimate.

Samples whose error exceeds a certain threshold are

completely removed from the estimation.

Critical here is the scale of the absolute residual distribution,

which is directly related to this outlier rejection threshold.

This involves computing the median for each segment (object)

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 8

� �����������	
�� ���
�
���

� ������������	
�� ����
�
���

� ����	����
�� �����
�
���

� �� ��� ���
�

�

�

�

�

�

�

�	
��
 �� �������

��

�
��
�

�
�

�
� ����� ��

�� �����
����

� �� ��� ���
�

�

�

�

�

�

�

�	
��
 �� �������

��

�
��
�

�
�

�
� ����� ��

�� �����
����

� �� ��� ���
�

�

��

��

��

�	
��
 �� �������

��

�
��
�

�
�

������	�� ������� �������

Fig. 7. (A,B,C) Example synthetic images used to evaluate computational
performance as a function of number of objects tracked. Computation times
of the pose update component for (D) 50,000 and (E) 500,000 samples.
The legend refers to the following stages: pre-processing (pre), absolute
residuals and scale (scale), composition and reduction of the normal equations
(normeq), solving the normal equations (solve) and rendering (render). The
total computation times for the dense cue extraction (densecues) and pose
estimation using 50,000 (pose5e4) and 500,000 (pose5e5) samples are shown
in (F). These times are lower than the total times in (D) and (E) due to the
reduced overhead of timing the components.

at each iteration. Since computing the exact median requires

too many sorting operations, we instead use an approxima-

tion to the median, as successfully used previously in [46].

The particular algorithm used performs a recursive reduction

operation on triplets, at each stage replacing each triplet by

its center value [47]. This algorithm is very suitable for GPU

implementation. We limit the maximum number of elements

for determining this approximation to 39 = 19, 683 per

segment. We did not find any significant reduction in accuracy

when using the approximate rather than exact median on the

entire benchmarking dataset of Section IV. Concretely, the

absolute residuals are computed, the scale is determined, and

then the normal equations are computed as in the previous

section, but now weighting each sample according to the scale

and the residual. The final systems are again solved on the

CPU.

E. Processing Times

We have created a synthetic problem dataset to evaluate

how the computation times scale as a function of the number

of objects being tracked. In this experiment the images were of

resolution 640×480. The same object was rendered multiple

times in a regular grid. The left camera images for the first

frame for problems involving 4, 36 and 144 objects are shown

in Fig. 7(A–C). The objects undergo small pose changes in

this experiment in order to guarantee a very large number

of valid optical flow and stereo samples for each segment so

as to maximize the computational complexity. In this way it

constitutes a worst-case scenario that provides an upper bound

on the computational requirements. The fewer objects there

are, the closer to the camera we position them so as to have

a sufficient number of valid samples for the experiment.

Three internal (M-estimation) and three external (ICP) it-

erations were performed. The component and total times for

a 6DOF tracking problem ranging from one to 160 objects

are shown in Fig. 7. All times were obtained employing a

single GPU of a Geforce GTX 590. As expected, the pre-

processing stage (dominated by the radix sort) is the most

time-consuming. A substantial increase occurs at 16 objects

since a switch is made from 4 to 8 bit radix sorting to

handle the segment labels exceeding 16. More efficient and

gradual implementations can be used here instead [48]. The

times required to compose and solve the normal equations

(including CPU–GPU transfers), and for rendering, increase

linearly (but slowly) with number of objects. In general this

increase is controlled and we also see excellent scaling in

terms of the number of samples used from 50,000 (Fig. 7D) to

500,000 (Fig. 7E). With the number of objects considered here,

rendering and normal equations solving times are negligible.

A breakdown of the time required to compute the low level

dense cues for a single 640×480 image frame is provided in

Table I (once again using one GPU of a Geforce GTX 590). As

discussed in Section III-A, four Gabor pyramids need to be

computed (left, right, 2× left AR). A number of rendering

steps are also required to create the stereo priors and AR

images. Note that the low-level component computes dense

stereo and three times optical flow altogether at ±100 Hz.

Table II contains the framerates achieved by the complete

tracking system (low-level and pose updates) for a number

of different configurations. These times correspond to those

reported in Fig. 7F. Note that the complete tracking system

operates at 38 Hz when tracking 150 objects using 500,000

samples. The computational requirements of the most demand-

ing parts of the tracking component, namely the low-level

vision and radix-sorting, scale approximately linearly in the

number of pixels [33], [45]. Since they are massively parallel,

the tracking component can process higher resolution images

faster on GPUs equipped with more processing cores.

The sparse detection component runs independently on the

second GPU of the Geforce GTX 590 so that it does not affect

the tracker’s speed. Its estimates are employed when available

and so its speed mainly determines the recovery latency in

case tracking is lost. Our current implementation runs at 20 Hz.

This can be increased by reducing the model size and/or using

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 9

TABLE I
PROCESSING TIMES DENSE LOW-LEVEL CUES (IN MS)

dense cues (640×480 image size)

– image transfer CPU → GPU 0.4
– Gabor pyramid (4×) 3.3
– optical flow 1.5
– AR flow (2×) 3.0
– model-based stereo 1.2
– rendering 0.9

total 10.3

TABLE II
TRACKING FRAME RATES (IN HZ)

samples

objects 50,000 500,000

1 61 55
20 54 43

150 46 38

more efficient keypoints and descriptors, but at the cost of

reduced accuracy. An alternative is to use FPGA-accelerated

SIFT implementations [49].

IV. SYNTHETIC BENCHMARK DATASET

We have constructed an extensive synthetic benchmark

dataset to evaluate pose trackers under a variety of realistic

conditions. Its creation is discussed in detail next, but Fig. 11

already shows some representative examples that illustrate the

large distance range, background and object variability, and the

added noise and occlusions. The complete dataset is available

on-line.1 Note that we only focus on the single object case

here to facilitate the comparison with alternative methods. We

show many real-world examples involving multiple objects in

Section V-C and Supplemental Material Video 3.2

A. Object Models

We have selected four objects from the publicly available

KIT object models database [50]. Snapshots of these models

are shown in Fig. 8 (soda, soup, clown, and candy) and provide

a good sample of the range of shapes and textures available in

the database. We also included two cube-shaped objects, one

richly textured (cube), and the other containing only edges

(edge).

1http://www.karlpauwels.com/datasets/rigid-pose/
2All supplemental material is available at

http://www.karlpauwels.com/ieee-tcsvt-2015-supplemental-material/

soda soup clown cube edgecandy

Fig. 8. Object models used in the synthetic sequences.

� ��� ���

����

�

���

���	

��
��
�

�
�
�
�
�
�

�

�
�

�
�

������������ �����
��

�
�
�

� ��� ���
����

�

���

���

���

���

���	

��
�
�
�
��
�

�
�
�

�
	
	
�

������������ ��������
��

�
�
�

� �

Fig. 9. Ground-truth object motion in synthetic sequences.

B. Object and Background Motion

Using the proposed system, we recorded a realistic and

complex motion trace by manually manipulating an object

similar to cube. This, possibly erroneous, motion trace was

then used to generate synthetic sequences and so it is, by

definition, the ground-truth object motion. The trace is shown

in Fig. 9 and covers a high dynamic range, varying all six

degrees of freedom. The sequence was recorded at 30 Hz

and consists of 586 frames. The object’s translational speed

ranged from 5 mm/s to 452 mm/s, with average 137 mm/s

and standard deviation 79 mm/s. The rotational speed ranged

from 1 deg/s to 221 deg/s, and averaged at 81 deg/s with

standard deviation 49 deg/s. The realism and complexity of the

sequences is further increased by blending the rendered objects

into a real-world stereo sequence recorded with a moving

camera in a cluttered office environment. The camera motion

only serves to prohibit the use of a background subtraction

algorithm as a segmentation pre-processing step. The object

pose itself is always expressed and estimated with respect to

the camera. Some examples are shown in Fig. 11 but, to fully

appreciate the complexity, we refer to Supplemental Material

Video 1.

C. Noise and Occluder

To further explore the limitations of pose tracking methods,

different sequences are created corrupted either by noise or

an occluding object. For the noisy sequences, Gaussian noise

(with σ equal to one tenth of the intensity range) is added

separately to each color channel, frame, and stereo image

(Fig. 11B). To obtain realistic occlusion (with meaningful mo-

tion and stereo cues), we added a randomly bouncing 3D teddy

bear object to the sequence (Fig. 11C,D and Supplemental

Material Video 1). The occlusion proportion of the cube object

over the sequence is shown in Fig. 10. Although this differs

for the left and right sequences, none of the methods evaluated

here exploit this (e.g. our dense stereo cue is affected by either

left or right occlusions).

D. Performance Evaluation

Pose trackers are usually evaluated by comparing the es-

timated to the ground-truth or approximate ground-truth pose

across an entire sequence [14], [15], [18], [20]–[22]. However,

once a tracker is lost, the subsequent estimates (and their

errors) become irrelevant. For example, if tracking is lost early

in the scene, the average error will typically be very large, but

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 10

� ��� ��� ��� ��� ���
�

���

�

�����

�
��
�
�
��
	�

����
�	�
��������	�
 ���� ���� �	���

Fig. 10. Proportion occlusion in the cube sequence.

soda - orig - left 339A clown - noisy - left 1B

cube - occl - left 540C cube - occl - right 540D

Fig. 11. Indicative samples from the different synthetic sequences illustrating
(A) large distance range, (B) added noise, and (C,D) different occlusion
proportions in the left and right sequences (orig = noise free; occl = occluded;
number = frame index).

this doesn’t mean the tracker cannot track the object in the

remainder of the sequence, if re-initialized.

For this reason, we propose to instead measure the propor-

tion of a sequence that can be tracked successfully. Since we

use synthetic sequences, we can continuously monitor tracking

accuracy and automatically reset when tracking is lost. But

how to decide if tracking is lost? Rotations and translations

affect an object’s position in very different ways and are

therefore hard to summarize into a single error. Instead we

use the largest distance between corresponding vertices, vj ,

of the object transformed according to the ground-truth (R, t)
and estimated pose (R̂, t̂):

eP = max
j

‖(R̂vj + t̂)− (Rvj + t)‖ . (28)

This measure is easy to interpret and is sensible from a

task-based perspective. Considering for example a grasping

or collision-avoidance task, it is important to understand the

positional accuracy of the entire object, incorporating both its

shape and the pose. When this distance exceeds a threshold

(e.g. 10 mm), the tracker is reset to the ground-truth. The

proportion of the sequence tracked correctly then constitutes a

scalar performance measure for the entire sequence. To put this

measure in perspective, a static error is also computed for each

sequence using a ‘naive tracker’. This ‘tracker’ simply never

updates the pose. As a consequence all resets are triggered by

the object motion alone and the error provides an indication

of the sequence complexity. For example, in a sequence with

a static object, perfect performance will be achieved.

TABLE III
TRACKING SUCCESS RATE (IN %) – STEREO AND OPTICAL FLOW

ORIG = NOISE FREE; OCCL = OCCLUDED

soda edge

orig noisy occl orig noisy occl

static 53 53 53 50 50 50
stereo 77 47 42 60 51 33
optical flow 93 81 57 78 81 40
stereo+flow 100 96 64 92 93 52

V. RESULTS

A. Stereo and Optical Flow Synergy

Table III shows results on the least textured sequences soda

and edge. It contains the proportion of the sequence that can

be tracked correctly, as defined in the previous section, by

different configurations of the proposed method either using

only stereo, only optical flow, or both cues together. The

results are evaluated on all three versions of the sequences,

namely noise-free (orig), noisy, and occluded (occl). The static

performance is around 50% everywhere, which means that,

without tracking, a reset is required approximately every other

frame. Due to the low texture, shape-symmetry (soda) and

shape-planarity (edge), stereo-only performance is quite bad

in these sequences and even below static in the noisy and

occluded scenarios. Optical-flow-only performance is better

but, when both are combined, great improvements can be ob-

served. This highlights the importance of combining multiple

cues, particularly in low-texture situations. The AR flow and

sparse cues further improve the results, but these are discussed

in the next section (and shown in Table V).

B. State-of-the-art Methods

The Blocks World Robotic Vision Toolbox (BLORT) [5]

provides a number of object learning, recognition, and tracking

components that can be combined to robustly track object

pose in real-time. We only evaluate the particle-filter-based

tracking module here since the recognition module is very

similar to our sparse-only method. Each particle represents a

pose estimate and is used to render an edge model (combining

edges from geometry and texture) that is matched against

edges extracted from the current image. We evaluate BLORT’s

tracking module with the default (real-time) setting with 200

particles and a high precision variant with 10,000 particles.

Due to an inefficient rendering procedure, the current tracker

implementation of BLORT can not handle models with a high

vertex count. We therefore limited the geometrical complexity

of the models to 800 triangles in all the sequences.

We also evaluate a state-of-the-art real-time-capable region-

based tracker. The PWP3D method [20] uses a 3D geometry

model to maximize the discrimination between statistical fore-

ground and background appearance models, by directly oper-

ating on the 3D pose parameters. To ensure the best possible

performance, we used very small gradient descent step sizes

(0.1 degrees for rotation and 1 mm for translation). Together

with a large number of iterations (100), this ensures stable

convergence (although no longer in real-time). Furthermore,

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 11

TABLE IV
TRACKING ERRORS (e

{x,y,z}
T

AND eP IN MM, e
{x,y,z}
R

IN DEGREES) AND

SUCCESS RATES (SR IN %) OBTAINED ON THE SODA SEQUENCE

soda – noise free

e
x
T

e
y

T
e
z
T

e
x
R

e
y

R
e
z
R

eP SR

sparse-and-dense 0.2 0.2 1.1 0.3 0.7 0.6 1.5 98.5
dense-only 0.3 0.2 0.9 0.3 0.9 0.6 1.5 100.0

sparse-only 0.7 0.4 3.1 1.0 1.4 0.6 4.2 61.1
part. filt. 10,000 1.2 0.7 3.9 1.3 2.8 1.3 5.7 75.5
region-based 0.5 1.1 2.2 1.9 7.2 4.8 6.2 84.4
part. filt. 200 1.3 1.0 3.9 1.9 3.1 1.8 6.1 57.5
static 3.1 1.9 3.5 1.6 2.8 1.9 6.8 53.1

soda – noisy

e
x
T

e
y

T
e
z
T

e
x
R

e
y

R
e
z
R

eP SR

sparse-and-dense 0.9 0.7 2.3 0.8 2.0 1.9 3.8 95.9
dense-only 0.9 0.6 2.3 0.8 2.1 1.9 3.8 97.1

sparse-only 1.2 0.8 3.1 1.7 2.4 1.2 5.3 36.5
part. filt. 10,000 1.5 0.8 4.4 1.3 2.8 1.2 6.2 65.2
region-based 0.5 1.1 2.2 2.2 6.6 4.9 6.1 84.4
part. filt. 200 1.4 1.0 4.1 1.8 3.3 1.9 6.4 59.6
static 3.1 1.9 3.5 1.6 2.8 1.9 6.8 53.1

soda – occluded

e
x
T

e
y

T
e
z
T

e
x
R

e
y

R
e
z
R

eP SR

sparse-and-dense 0.7 0.5 1.8 0.9 1.6 1.1 3.0 68.3

dense-only 0.7 0.5 1.6 0.9 1.5 1.3 2.9 67.0
sparse-only 0.8 0.4 3.2 1.1 1.5 0.8 4.3 44.0
part. filt. 10,000 1.7 1.1 3.9 1.2 3.0 1.1 6.0 53.8
region-based 0.7 1.1 2.4 1.9 7.2 5.3 6.3 44.0
part. filt. 200 1.7 1.2 4.2 1.9 3.5 2.1 6.8 45.2
static 3.1 1.9 3.5 1.6 2.8 1.9 6.8 53.1

we initialized the PWP3D method at each frame with the

ground-truth color histogram of the actual (or unoccluded)

frame being processed so that also inaccuracies here do not

affect performance.

1) Tracking Success Rates: Table V summarizes all the

results obtained with a tracking reset threshold equal to 10

mm. To better quantify the precision obtained, we have also

computed the Root Mean Squared (RMS) errors, obtained

on the successful frames, for the three translational (e
{x,y,z}
T)

and three rotational (e
{x,y,z}
R) components of the pose (using

Euler angles for the rotation components) and for the maximal

distance error (28). For each condition, we highlight the best

result in Table V, considering first the Success Rate (SR) and

then the RMS distance error. The more detailed measures

can be found in Table IV, but only for the soda sequence.

The complete table is available at the supplemental material

website.

The proposed dense-only tracking method obtains an SR

close to 100% regardless of model shape, texture (see edge),

or sequence noise (although eP increases with noise as can be

expected). In the occluded scenario however, it is frequently

outperformed by the sparse-only and high quality particle

filter methods. But, when combined with the sparse method

(II-C2) the synergy of both modules is confirmed. Sparse-

and-dense retains the excellent performance of the dense-

only method with greatly improved robustness to occlusions,

even outperforming sparse-only on most sequences. The slight

decrease in performance of sparse-and-dense with respect to

dense-only is due to the limits of the selection mechanism.

At times, a less accurate sparse estimate can result in a

larger AR-flow proportion. A potential improvement is to also

consider the magnitude of the AR flow, but we found this to be

0 20 40 60 80 100
0

20

40

60

80

100

occlusion proportion (in %)

s
u
c
c
e
s
s
 r

a
te

 (
in

 %
)

sparse−and−dense

dense−only

sparse−only

part. filt. 10,000

region−based

part. filt. 200

Fig. 12. Average tracking success rates obtained across all benchmarking
sequences as a function of the proportion of the tracked object that is occluded.

less robust. More important though is that, unlike dense-only,

sparse-and-dense also enables recovery from tracking failures,

which is critical in real-world applications. The particle filter

method performs very well provided a very large number of

particles are used. In the real-time setting (200 particles) the

performance is not much better than static. The sparse-only

method performs badly on soda due to the weak texture, and

fails on edge due to the complete lack of texture. The region-

based tracker performs consistently well on the noise-free and

noisy sequences, but fails dramatically in the presence of an

occluder. Although it can handle certain types of occlusions,

large failures occur when an entire side of the object contour

is occluded [20].

2) Occlusion Robustness: Figure 12 shows the evolution

of the tracking success rates as a function of the proportion

of the object that is occluded. This graph was generated by

binning all the instances where the tracking error exceeds

the reset threshold according to the occlusion proportion of

the object at that frame. It highlights the synergy obtained

with the sparse-and-dense method. It retains sparse-only’s

robustness at high occlusion proportions, while achieving a

higher success rate at lower occlusion proportions than either

sparse-only or dense-only. Figure 12 also illustrates the high

sensitivity to occlusion of the region-based method, which

breaks down completely between 20% and 30% occlusion. Fi-

nally, the particle filter methods demonstrate a slightly higher

robustness at high occlusion proportions. This is because at

very high occlusion levels, the robust estimation component

of the proposed method will break down and the optical flow

estimated at the occluder will also be used to update tracking.

As discussed in Section II-C2 our reliability measure can

signal such extreme occlusions, and so tracking will typically

be disabled in these circumstances. See the next section and

specifically Fig. 13 for examples of this behavior on real-world

sequences.

C. Real-world Sequences

1) Complex Scenarios: The proposed method also yields

excellent results in real-world scenarios. Some example single

object results with a cluttered scene, occluders, and camera

motion are shown in Fig. 13. The dense estimate is selected

as winner in Fig. 13A,B. This usually occurs when the object

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 12

TABLE V
TRACKING SUCCESS RATE (IN %) – ORIG = NOISE FREE; OCCL = OCCLUDED

soda soup clown candy cube edge

orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl orig noisy occl

sparse-and-dense 98.5 95.9 68.3 97.9 97.3 78.3 100.0 98.3 77.7 99.8 99.5 79.5 100.0 100.0 75.7 96.2 97.4 56.2
dense-only 100.0 97.1 67.0 99.0 98.1 69.7 100.0 100.0 68.5 100.0 100.0 72.9 100.0 100.0 69.9 96.2 97.4 56.2
sparse-only 61.1 36.5 44.0 93.0 74.0 76.5 92.0 71.1 74.1 95.4 90.4 80.0 97.6 95.9 78.8 0.0 0.0 0.0
part. filt. 10,000 75.5 65.2 53.8 76.9 65.8 62.5 87.5 82.4 76.4 76.7 76.4 63.9 93.2 93.7 76.2 72.4 91.3 68.2

region-based 84.4 84.4 44.0 96.2 95.5 44.0 96.4 89.4 43.8 83.6 83.9 39.2 83.9 74.3 37.8 84.6 83.7 38.9
part. filt. 200 57.5 59.6 45.2 46.7 53.9 40.2 56.2 62.2 48.1 45.9 48.8 40.9 53.1 53.6 38.9 63.2 62.5 49.7
static 53.1 53.1 53.1 45.0 45.0 45.0 47.1 47.1 47.1 46.4 46.4 46.4 50.2 50.2 50.2 50.2 50.2 50.2

dense pose winsA dense pose winsB sparse pose winsC detected failureD

Fig. 13. Indicative real-world single object pose estimation results, showing how the dense pose is selected when (A) the object is far and/or (B) motion-blurred,
how the sparse pose is selected in case of (C) strong occlusions, and how (D) failures can be detected correctly.

is far away (A) or suffering from severe motion blur (B). The

sparse estimate is usually selected when only a small part

of the object is visible (C). Figure 13D finally shows some

tracking failures that are detected correctly by the reliability

measure (proportion AR flow < 0.15). See Supplemental

Material Video 2 for more single object real-world results.

Figure 14 contains three snapshots of longer sequences con-

tained in Supplemental Material Video 3. This video demon-

strates the proposed method in various complex scenarios

involving multiple interacting objects undergoing manipula-

tion. The 3D models were obtained using a publicly available

solution [1]. In some of these scenarios (Fig. 14A,B) we also

show an image rendered from a viewpoint different from the

camera, to more clearly show the precision obtained by our

system. Note how in Fig. 14A,B the objects are aligned quite

precisely even though we do not prevent them from intersect-

ing each other. Our approach can handle a great variety in

shape and appearance (e.g. the melon object in Fig. 14B). The

method is also quite robust to inaccuracies at the modeling

stage (e.g. due to limits of the acquisition process the bottoms

of the objects are never modeled, see Fig. 14B caserio object,

but see also Fig. 2). Occlusions between the different objects

are also handled automatically through the rendering process

and subsequent label assignment. Figure 14C shows how the

model-based stereo handles multiple objects and occlusions.

2) Comparison to Particle Filter Method: We finally com-

pare sparse-and-dense to the particle filter method on real-

world sequences in which a single object is manipulated.

Some example images are shown in Fig. 15 but the complete

sequences are available as Supplemental Material Video 4. For

the object considered here the particle filter method achieves

near real-time performance using 200 particles (15 Hz) but

requires multiple seconds per frame when using 10,000 par-

ticles (0.3 Hz). The results agree with those obtained on the

synthetic benchmarking dataset. The poses estimated with 200

particles are jittery, but become much more stable with 10,000

particles. With this large number of particles they are visually

similar to the estimates obtained with sparse-and-dense. When

we increase the manipulation speed, motion blur is introduced

in the scene and the particle filter method quickly loses track,

see Fig. 15 right column. The proposed method successfully

tracks the object throughout the sequences.

VI. DISCUSSION

Although highly robust, the edge-based particle filter

method requires a large number of particles to achieve high

accuracy. Since each particle requires a rendering step, the

performance critically depends on model complexity. This

method, and other related particle filter methods [26] are

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 13

����������	�
���
������������

�������������

�������������

	
����
����������

����������	���
���������

���

����������	������������

Fig. 14. Real world pose detection and tracking results involving multiple
objects and complex dynamics. These images are representative snapshots of
much longer sequences (see Supplemental Material Video 3).

� ����������������	��������	����
�	�

�	���	�
���

� ����������������	��������	����
�	�

�	������	�
���

Fig. 15. Comparison between sparse-and-dense and the particle filter method
on a real-world image sequence. In the left column (A to B) we see the
improved accuracy that results from increasing the number of particles. In the
right column we see the failure of the particle filter method due to high speed
object motion and motion blurring. These images are representative snapshots
of much longer sequences (see Supplemental Material Video 4).

also difficult to extend to the articulated scenario due to the

increased dimensionality of the problem. The sparse keypoint-

based method is highly robust to occlusions and provides

excellent synergy with the dense methods proposed here. The

region-based method does not require edges or texture and

performs very well. It does have problems with symmetric

objects, is slow to converge, and fails on certain types of

occlusions. This requires the use of multiple cameras or

explicit modeling of the occlusions. There is much potential

for incorporating color-based (region-based) cues into the

proposed method. However it is not straightforward to process

these in a GPU-friendly manner.

Note that the proposed method also supports depth cues

other than stereo (e.g. from a Kinect sensor), and conversely,

enables for the incorporation of motion cues in current depth-

only applications [2]. Current Kinect versions however do not

provide the high shape detail close to the camera, nor the high

framerates achieved by our model-based stereo algorithm [51].

The scalability results shown here can be considered some-

what artificial. Nonetheless, there are many situations where

this approach is useful. Multiple (not necessarily overlapping)

camera views can be combined to simultaneously track a very

large number of objects. The same could be achieved by

equipping a higher resolution sensor with a wide-angle lens.

Also articulated or non-rigid objects could be decomposed

or approximated by a large number of rigid components that

can be jointly tracked using this approach. Specifically, it has

been shown how the parts can be considered as separate rigid

objects and the constraints enforced later [13], [52]. Additional

constraints can be obtained from physics simulations and

incorporated in a temporal filtering framework considering

also (multi-)object persistence, manipulator feedback, etc.

VII. CONCLUSION

We have presented a novel model-based multi-cue approach

for simultaneously tracking the 6DOF poses of a very large

number of rigid objects that exploits dense motion and stereo

cues, sparse keypoint features, and feedback from the modeled

scene to the cue extraction. The method is inherently paral-

lel and efficiently implemented using GPU acceleration. We

have introduced an evaluation methodology and benchmark

dataset specifically for this problem. Using this dataset we

have shown improved accuracy, robustness, and speed of the

proposed method as compared to state-of-the-art real-time-

capable methods.

ACKNOWLEDGMENT

The authors gratefully acknowledge the European FP7

project RoboHow (FP7-ICT-288533) and the Spanish National

Project NEUROPACT (TIN2013-47069-P). The GPU used for

this research was donated by the NVIDIA Corporation.

REFERENCES

[1] Autodesk, “123D Catch,” http://www.123dapp.com/catch/, 2014.
[2] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,

D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion:
real-time dense surface mapping and tracking,” in Proc. IEEE Int. Symp.

on Mixed and Augmented Reality, Oct. 2011, pp. 127–136.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, APRIL 2015 14

[3] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3D object modeling,” Int. J. Robot. Res., 2011.

[4] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3D tracking using
online and offline information,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 10, pp. 1385 –1391, Oct. 2004.

[5] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze,
“BLORT - The Blocks World Robotic Vision Toolbox,” in Proc. IEEE

Int. Conf. on Robotics and Automation, 2010.
[6] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework:

Object recognition and pose estimation for manipulation,” Int. J. Robot.

Res., vol. 30, no. 10, pp. 1284–1306, Apr. 2011.
[7] Q. Hao, R. Cai, Z. Li, L. Zhang, Y. Pang, F. Wu, and Y. Rui, “Efficient

2D-to-3D correspondence filtering for scalable 3D object recognition,”
in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition,
June 2013.

[8] S. Holzer, S. Hinterstoisser, S. Ilic, and N. Navab, “Distance transform
templates for object detection and pose estimation,” in Proc. IEEE Int.

Conf. on Computer Vision and Pattern Recognition, 2009, pp. 1177–
1184.

[9] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit, “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes,” in Proc. Int. Conf. on Computer

Vision, 2011, pp. 858–865.
[10] P. Besl and N. McKay, “A method for registration of 3D shapes,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239–256, 1992.
[11] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,

and N. Navab, “Model based training, detection and pose estimation of
texture-less 3D objects in heavily cluttered scenes,” in Proc. Asian Conf.

on Computer Vision. Springer, 2013, pp. 548–562.
[12] J. Liebelt and C. Schmid, “Multi-view object class detection with a 3D

geometric model,” in Proc. IEEE Int. Conf. on Computer Vision and

Pattern Recognition, 2010, pp. 1688–1695.
[13] T. Drummond and R. Cipolla, “Real-time visual tracking of complex

structures,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp.
932–946, 2002.

[14] V. Kyrki and D. Kragic, “Tracking rigid objects using integration of
model-based and model-free cues,” Mach. Vision Appl., vol. 22, pp.
323–335, 2011.

[15] M. Pressigout and E. Marchand, “Real-time hybrid tracking using edge
and texture information,” Int. J. Robot. Res., vol. 26, pp. 689–713, 2007.

[16] M. Pressigout, E. Marchand, and E. Memin, “Hybrid tracking approach
using optical flow and pose estimation,” in Proc. IEEE Int. Conf. on

Image Processing, Oct. 2008, pp. 2720–2723.
[17] P. Azad, D. Munch, T. Asfour, and R. Dillmann, “6-DoF model-based

tracking of arbitrarily shaped 3D objects,” in Proc. IEEE Int. Conf. on

Robotics and Automation, May 2011, pp. 5204–5209.
[18] C. Choi and H. Christensen, “Robust 3D visual tracking using particle

filtering on the special euclidean group: A combined approach of
keypoint and edge features,” Int. J. Robot. Res., vol. 31, no. 4, pp.
498–519, 2012.

[19] C. Teuliere, E. Marchand, and L. Eck, “Using multiple hypothesis
in model-based tracking,” in Proc. IEEE Int. Conf. on Robotics and

Automation, 2010, pp. 4559–4565.
[20] V. Prisacariu and I. Reid, “PWP3D: Real-time segmentation and tracking

of 3D objects,” Int. J. Comput. Vision, vol. 98, pp. 335–354, 2012.
[21] T. Brox, B. Rosenhahn, J. Gall, and D. Cremers, “Combined region and

motion-based 3D tracking of rigid and articulated objects,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 402–415, 2010.
[22] A. Petit, E. Marchand, and K. Kanani, “A robust model-based tracker

combining geometrical and color edge information,” in Proc. IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 2013.
[23] Q. Wang, W. Zhang, X. Tang, and H.-Y. Shum, “Real-time bayesian

3-D pose tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 16,
no. 12, pp. 1533–1541, Dec 2006.

[24] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 1, pp. 58–72, 2014.

[25] P. Azad, T. Asfour, and R. Dillmann, “Accurate shape-based 6-DoF pose
estimation of single-colored objects,” in Proc. IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, Oct. 2009, pp. 2690–2695.
[26] C. Choi and H. Christensen, “RGB-D object tracking: A particle filter

approach on GPU,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, 2013, pp. 1084–1091.
[27] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. IEEE Int. Conf. on Computer Vision

and Pattern Recognition, Jun. 2011, pp. 1297–1304.

[28] C. Teuliere and E. Marchand, “Direct 3D servoing using dense depth
maps,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2012, pp. 1741–1746.

[29] A. Talukder and L. Matthies, “Real-time detection of moving objects
from moving vehicles using dense stereo and optical flow,” in Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 4, Sep.
2004, pp. 3718–3725 vol.4.

[30] T. Komuro, I. Ishii, M. Ishikawa, and A. Yoshida, “A digital vision
chip specialized for high-speed target tracking,” IEEE Trans. Electron

Devices, vol. 50, no. 1, pp. 191–199, 2003.
[31] K. Pauwels, L. Rubio, J. Diaz Alonso, and E. Ros, “Real-time model-

based rigid object pose estimation and tracking combining dense and
sparse visual cues,” in Proc. IEEE Int. Conf. on Computer Vision and

Pattern Recognition, Portland, June 2013.
[32] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.
[33] K. Pauwels, M. Tomasi, J. Dı́az, E. Ros, and M. Van Hulle, “A

comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features,” IEEE Trans. Comput., vol. 61, no. 7,
pp. 999–1012, 2012.

[34] M. Tomasi, M. Vanegas, F. Barranco, J. Daz, and E. Ros, “Massive
parallel-hardware architecture for multiscale stereo, optical flow and
image-structure computation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 2, pp. 282–294, 2012.

[35] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT),” http://cs.unc.edu/∼ccwu/siftgpu, 2007.

[36] S. Sabatini, G. Gastaldi, F. Solari, K. Pauwels, M. Van Hulle, J. Dı́az,
E. Ros, N. Pugeault, and N. Krüger, “A compact harmonic code for early
vision based on anisotropic frequency channels,” Comput. Vis. Image

Und., vol. 114, no. 6, pp. 681–699, 2010.
[37] K. Pauwels and M. Van Hulle, “Optic flow from unstable sequences

through local velocity constancy maximization,” Image Vision Comput.,
vol. 27, no. 5, pp. 579–587, 2009.

[38] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[39] G. Blais and M. Levine, “Registering multiview range data to create

3D computer objects,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17,
no. 8, pp. 820–824, 1995.

[40] C. Yang and G. Medioni, “Object modelling by registration of multiple
range images,” Image Vision Comput., vol. 10, no. 3, pp. 145–155, 1992.

[41] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving
retinal image,” P. Roy. Soc. B-Biol. Sci., vol. 208, pp. 385–397, 1980.

[42] F. Mosteller and J. Tukey, Data analysis and regression: A second course

in statistics. Mass.: Addison-Wesley Reading, 1977.
[43] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid

objects,” Foundations and Trends in Computer Graphics and Vision,
vol. 1, pp. 1–89, 2005.

[44] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[45] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.7.0. [Online]. Available: http://thrust.github.io/

[46] K. Pauwels, N. Krüger, M. Lappe, F. Wörgötter, and M. Van Hulle, “A
cortical architecture on parallel hardware for motion processing in real
time,” J. Vision, vol. 10, no. 10, 2010.

[47] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and M. Hofri, “An
efficient algorithm for the approximate median selection problem,” in
Algorithms and Complexity, ser. Lecture Notes in Computer Science,
G. Bongiovanni, R. Petreschi, and G. Gambosi, Eds. Springer Berlin
Heidelberg, Jan. 2000, no. 1767, pp. 226–238.

[48] D. Merrill and A. Grimshaw, “High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU
computing,” Parallel Processing Letters, vol. 21, no. 02, pp. 245–272,
2011.

[49] J. Jiang, X. Li, and G. Zhang, “SIFT hardware implementation for
real-time image feature extraction,” IEEE Trans. Circuits Syst. Video

Technol., vol. 24, no. 7, pp. 1209–1220, 2014.
[50] A. Kasper, Z. Xue, and R. Dillmann, “The KIT object models database:

An object model database for object recognition, localization and
manipulation in service robotics,” Int. J. Robot. Res., vol. 31, no. 8,
pp. 927–934, 2012.

[51] Wikipedia, “Kinect,” 2014.
[52] K. Pauwels, L. Rubio, and E. Ros, “Real-time model-based articulated

object pose detection and tracking with variable rigidity constraints,”
in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition,
Columbus, Ohio, 2014.

