Pauwels, Karl and Kragic, Danica

IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 2016

PDF
BibTeX Citation
Supplemental Material (Datasets, Videos, ...)

We present a novel on-line approach for extrinsic robot-camera calibration, a process often referred to as hand-eye calibration, that uses object pose estimates from a real-time model-based tracking approach. While off-line calibration has seen much progress recently due to the incorporation of bundle adjustment techniques, on-line calibration still remains a largely open problem. Since we update the calibration in each frame, the improvements can be incorporated immediately in the pose estimation itself to facilitate object tracking. Our method does not require the camera to observe the robot or to have markers at certain fixed locations on the robot. To comply with a limited computational budget, it maintains a fixed size configuration set of samples. This set is updated each frame in order to maximize an observability criterion. We show that a set of size 20 is sufficient in real-world scenarios with static and actuated cameras. With this set size, only 100 microseconds are required to update the calibration in each frame, and we typically achieve accurate robot-camera calibration in 10 to 20 seconds. Together, these characteristics enable the incorporation of calibration in normal task execution.